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B.1 Proof of Proposition 1 on p. 16

Proof. Consider a test-fee structure (G, ). If (w-P) is violated, then Lemma 1 shows that
there is an equilibrium with zero revenue and the proposition follows. Suppose that (w-P)

0 .
oyl — G(s)]ds. This
expression implies that any testing fee that satisfies (w-P) is at most the area above the score

holds. Using integration by parts, we can rewrite (w-P) as ¢, <

distribution G from g + ¢4 to 6, shaded dark in Figure 8. The revenue from disclosure is at
most ¢qPr[s > 6 + ¢4], shaded light in Figure 8. This is because in any equilibrium, a score
strictly less than 0 + ¢4 strictly prefers to conceal. So the total revenue is at most the shaded

area above (G. Since G is a mean-preserving contraction of the prior distribution,

p= /:sdG(S) = /00[1 — G(s))ds + 0

and therefore the area above G is equal to Rp = o — 6.
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Figure 8: The revenue from the testing fee is shaded dark. The revenue from the disclosure fee is at most the
area shaded light.

Now suppose that there exists an equilibrium with a revenue of Rr — €. Since the revenue
is at most the shaded area above G and the total area above G is Rp, the unshaded area above
G is at most . In particular, the area above G from 6 + ¢4 to p + ¢4 is at most €. Since G is

monotone,

o | " - Ges < (5‘“—_*;“) [ s < (5‘—“) -
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Therefore, as € goes to zero, the revenue from the testing fee goes to zero as well. Thus, to
complete the proof we only need to show that the revenue from the disclosure fee also goes to
Zero.

For e small enough so that p+ ¢g > 0 + ¢4 + 1/, we have

e > /Wdu —G(s)ds > /gmd%u _ G(s)|ds > VE(L — G(8 + da+ VE)),

0+da 0+¢q

where the third inequality follows since G is monotone. That is, the probability that the score
is more than 7 = 0 + ¢4 + /¢ is at most /. Thus, if there exists an equilibrium threshold
above 7, the disclosure probability in that equilibrium is at most y/z. To show that there exists
an equilibrium threshold above 7, we apply Lemma 3 by showing that E[s|s < 7| > 7 — ¢g.

The expectation of G can be written as
p=G(T)E[s|s < 7]+ (1 — G(7))E[s|s > 7] < G(1)E[s|s < 7] + (1 — G(7))6.

Rearranging terms yields

and therefore by Lemma 3 there is an equilibrium threshold higher than 7.
To complete the proof, recall that ¢y < 6 — 1, so the revenue from the disclosure fee is no
more than /(0 — p). Thus the total revenue is at most (Z%g)a + V20 — ). O

B.2 Proof of Proposition 4 on p. 25

We first simplify the step-exponential-step distribution identified in Section 5 when the testing

fee is zero.

Lemma 12. Suppose that the prior distribution is log-concave and consider an optimal step-
exponential-step test-fee structure (G, @) defined by (5), (6), and (7). If ¢ = 0, then 7 =
p+¢q < 0 and G(12) = 1. Additionally, there exist 6,0 > 0 such that 5+ [} G(s)ds < [ F(s)ds

for any T € [11 — 0, 7].

Proof. For the optimal testing fee to be zero, the area above G from 1 + ¢4 to @ must be zero,
and hence G(u + ¢4) = 1. From Lemma 11, G(rp) = 1.
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The mean-preserving constraints which require that G is § — i can be written as

g—u:/ G(s)ds—l—/ H€%d8+<g—7'2)
0

T1
=r(m —70) + (11 — To)Heﬁ‘:f + (0 — 72)

= (7’1—70)—1-5—72,

where the third inequality follows because xk = e =0 is pinned down by the mean-preserving

contraction conditions. We must therefore have 7 = p+ (11 — 79) = 1 + ¢q-

We now show that the mean-preserving contraction constraints must be slack on interval
[71,72]. Notice that log-concavity implies continuity in the interior, which is used in the later
arguments.

We first claim that F(m) > G(r) = e, Suppose that F(11) < G(11). Then F(z) <
G(z) for any = € [19,71), which implies the constraint must be slack on the interval [, 71)
because [ F(s)ds = [} F(s)ds — [T F(s)ds > []' G(s)ds — [[' G(s)ds = [; G(s)ds. Since
the integ{als are contiﬁuous, the constraint is also slack at Ti. S0 we can construct a new
distribution parameterized by 7, = 71 — ¢ and 7}, = 7 — ¢, the distribution on [r;, 6] does not
change so all the constraints on [r, 6] are still satisfied. Also since the original constraints
on [0, 7] are slack, they are still satisfied for small €. By charging the same disclosure fee
¢4 = T — Ty, this new distribution induces a higher disclosure probability, which contradicts G
being optimal.

If F(m1) = G(1y), the same argument goes through if the constructed distribution does not
violate the mean-preserving constraints. If the constraint is slack at 7y, then all the constraints
at points lower than 7 are slack, so the constructed distribution is still a profitable deviation.
If the constraint binds at 7, the right derivative of F' at 73 must be greater than the right
derivative of GG. Also, the left derivative of F' must be greater than that of G by log-concavity.
So the local change of the distribution doesn’t violate any constraints, which leads to a profitable
deviation.

We must therefore have F(11) > G(71) and the constraint is slack at 7, due to the continuity
of F. Since the mean-preserving constraint is also slack at 7 and the integrals of G and F' are
continuous, there exists 0,0 > 0 such that ¢ + f(;, G(s)ds < f(;/ F(s)ds for any 7 € [1 — 0,7,
and further, 0 + [ G(s)ds < [)* F(s)ds. Moreover, from the log-concavity of F and the facts
that F\(11) > G (7{) and F(13) <G (12), F' crosses the exponential part of G from above exactly
once. To see this, notice that log(F') is concave and log(G) is linear on [, 2], and a concave
function can only cross a linear function from above once. Letting z* denote the intersection

point, we have F(x) > G(z) for x € [r,2z*) and F(z) < G(z) for x € (2%, 7). Now for any
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7' € [2*, 7] we have

5+ /9 " Gsyds = 5+ /9 " Gs)ds - / G(s)ds < /9 " P(s)ds — / " P(s)ds = /9 " F(s)ds.

/

Similarly, for any 7" € [y, 2*] we have

! ! / /

5+ /9 " Gs)ds = 6+ /9 " G(s)ds + / " G(s)ds < / " P(s)ds — / " F(s)ds = / " F(s)ds.

T1 Q T1 Q

To complete the proof, we show that 7, < 6. If 7, = 6, then since G is log-linear on
[71, 73] and F log-concave on that interval and the mean-preserving contraction constraints are
satisfied, it must be that G > F' over the interval |71, 73], and in particular, G(m) > F(71). But

as we argued above, G(71) < F'(71), which is a contradiction. O
Given Lemma 12 we now prove Proposition 4.

Proof of Proposition 4. By Lemma 11, if there exists a robustly optimal test-fee structure with
zero testing fee, then there exists a robustly optimal test-fee structure (G, ¢) in the step-
exponential-step class with zero testing fee. Suppose that G is parameterized by x and 7, . . . , 73.
This test G must satisfy the properties of Lemma 12. Given (G, ¢), we construct a class of

test-fee structures (G*, ¢°) for ¢ > 0 as follows

K if s = To
G(s5) = { kelsEN/(ME)=m0) if 5 € [11(e), To(e)]
F(s) i s € [rs(e). 7.

where 71(¢) = 1 — ¢, To(€) is specified below, and 73(¢) is defined so that G* is flat from 7 () to
m3(€), that is, 3(¢) = F~'(min(ke(2E-11E)/(1()=70) 1)) Let ¢4(c) = ¢g — € and define ¢,(¢)
such that (w-P) holds with equality.

We define m3(e) so that the integrals of G° and F' are the same. To show that such 7(e)

exists, we show that there is a unique solution z to

— z s—T1+e x—T71+¢€ 0
0 —p==r(n—ec—m)+ / kem==—0 ds + Keri—e (13(z) — ) + / F(s)ds

TI—¢€ 73(x)

T—T1+€ 6
= Kemeo (m—e—m+m3(x) —2x)+ / F(s)ds,

73(x)

where 73(z) = F~!(min(ke@71+e)/(m=e=m) 1)) The derivative of the right hand side with
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respect to x is

wom—c (7‘1 —e—Tot+m—x
KeTL—E—T0

+75(x) — 1) — 75(x) F(73(2)).
EENEDT L ) - 1) - (o) (o)
The derivative 74(x) exists because F' is assumed to have a positive density Now evaluate this
derivative at € = 0,7 = 75, where 73(x) = 0 and 1 = F(r3(z)) = keri—o. So the terms with

74(x) cancel out and the derivative is

7_
A

T — 70

Therefore, by the implicit function theorem, 75(e) is well-defined and |75(¢)| < oo for small
enough . It must be that G*(mz(¢)) < 1, implying that G is a well-defined distribution.
Otherwise GG* is above G which means that the integral of G* is larger than the integral of F'.
Notice that 75(0) = 73, which implies that (G°, ¢(0)) = (G, ¢).

We next show that for small enough € > 0, G® is a mean-preserving contraction of F'. That
is, f(; G°(s)ds < f0 s)ds for any 7 € [0, 0]. This inequality follows for all 7 < 7,(g) because
G and G¢ are 1dentlcal below 71(¢), and G is a mean-preserving contraction of F'. Similarly,
the inequality holds for all 7 > 7y (e) because G° is weakly higher than F' above 72(6). For
[71(¢), T2(€)], recall from Lemma 12 that there exist §, o > 0 such that 5+f9 ds < fe s)ds
for any 7 € [ — 0, 7). Now choose ¢ small enough so that [, G*(s)ds < (5 + fe ds for
any 7 € [ — 0,73 and further that 7 — o < 7(g). The two inequalities then 1mply that
Jy GZ(s)ds <6+ [, G(s)ds < [y F(s)ds for any 7 € [1i(g), 72(€)].

" To complete the proof, we show that for small enough £ > 0, the revenue guarantee of
(G=, ¢(¢)) is strictly higher than that of (G, ¢). First notice that 71(g) is a weak-highest equi-
librium threshold for the test-fee structure (G¢, ¢(g)). This is because G¢ is exponential from

71(€) to T»(e) and flat from 73(e) to pu + ¢4(e). The intermediary’s revenue is

Bi(e
- / [s — 11— da(€)]dG*(s) + dale) (1 = G*(11(e)))

71(e)
G°(s)ds + ¢q(e) — /9 G°(s)ds

ptdale)
= / G*(s)ds
T1 (E)

T2(e)—71(e)

= Kge "1(E)-7 (2(7’1(8) — TO) +u— Tz(ﬁ)) - (7'1(5) - TO)H'

To show that there exists € > 0 with R(¢) > R(0), we consider the derivative of revenue with
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respect to €, R'(¢). This derivative exists because 7] (¢) = —1, and 75(¢) exists and |75(¢)| < —o0

To(e)—71(€)

and write
T1(e)—70

as argued above. Now let \(¢) =

R'(¢) = re® (X(e) (2(ri(e) = 70) + p— m2(e)) — 2 — Té(&)) + K.

We now evaluate this derivative at ¢ = 0. The fact that G is a mean-preserving spread of F

implies that Kk = e =0 and therefore ke*©® = 1. Also 2(m — 10) + p — T2 = Pg. So we have

R'(0) =XN(0)¢g —2—13(0) + &

To —T1

:T£(0)+1—T1_TO—2—T£(O)+/<
:/43—7—2_7—1—1
T — To

-1

1 — 170

> 0.

The inequality follows because e* > 1+ « for # # 0. Thus R(e) > 0 for small enough €. This
contradicts the optimality of (G, ¢). O

B.3 Proof of Proposition 5 on p. 26

Proof. Consider a test-fee structure with a zero disclosure fee. By (w-P), the revenue is
7 ~ 7
0% [ (s=ma6ls) = @-m - | Glo)is.
it it

This revenue is maximized when the inequality holds as an equality and ff G(s)ds is minimized.
Since ij(s)ds > ffF(s)ds for any G that is a mean-preserving contraction of F, ij(s)ds
is minimized when ffG(S)dS = ij(s)ds. So the robustly optimal revenue is jf(s — p)dF(s),
which can be achieved by a binary test G with sy = FE[0|0 > u], sp = E[0]0 < u] and
G(sp) = Pr[@ < p]. To see this, first note that G € T'(F') because G is induced by a test that
maps 6 < p to s, and 6 > p to sy. Second, the revenue is fj(s —w)dG(s) = (1 —G(sp))(su —

#) = Pr(0 = 1) (BIOI0 > p] — ) = [;/(s = p)dF (s). O

B.4 Proof of Proposition 6 on p. 27

Proof. Suppose G € T'(F) is restricted to have binary support s;,ss € [0,0]. Without loss of

generality, let s; < so. Notice that for any s, s9, the mean-preserving contraction constraints
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pins down G(s;) = % From arguments similar to those used in proving Lemma 2, we focus
on ¢y, ¢g > 0. To satisfy (w-P), ¢pg < s9 — p. For any ¢4 € [0, 52 — pu], (w-HE) implies that
the lowest weak-highest equilibrium threshold is 7 = s1 + ¢gq € [s1,51 + 52 — p) C [s1, S2), SO
G(1) = G(s1).

Thus, the intermediary’s problem can be written as

max ¢ + 6a (1 — G(s1)) (19)

bt,0d,51,52

st ¢ < / s — (1 + 60)]dG(s)

+¢a

gbde[OaSQ—:u’]
Q§31<,u<52§§
G eI'(F).

Clearly the constraint for ¢, must bind, so ¢; = f/irdu [s—(40a)|dG(s) = (sa—pu—¢q)(1—G(s1)).

Plugging in ¢, we have ¢y + ¢a(1 — G(s1)) = (52 — p)(1 — G(s1))-
The problem can be further simplified to

max (se — p)(1 — G(s1))

$ar51,52
st. ¢gq€ (0,50 — p
0<s<p<sy<f
G eTI'(F).

Since ¢4 does not enter the objective function, for any optimal test, any ¢4 € [0, 82 —
and ¢; = (s3 — p — ¢a)(1 — G(s1)) form an optimal fee structure. In particular, ¢ = 0
and ¢, = (s2 — p)(1 — G(s1)) are optimal. Recall that from Proposition 5, a binary test
s1 = E[0]0 < p], s, = E[A|6 > p] is optimal when the intermediary is restricted to using only a
testing fee. So s1 = s = E[0]0 < p], so = sy = E[0]0 > p] is also an optimal test for problem
(19). O

B.5 Proof of Proposition 8 on p. 28

Proof. Consider an evidence-test-fee structure denoted by fees (¢, ¢q), an unbiased test T :
© — AS, and an evidence structure M : S == M such that for each s, M(s) is a Borel space.
A strategy profile (o, p) consists of the agent’s strategy ¢ = (or,0p), where or € [0, 1] and

op maps s € S to A(M(s) U{N}), and the market price p : M — [0,0]. Let (o,p) be an
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adversarial equilibrium. We first consider the case in which the agent has the asset tested with
probability 1, that is op = 1.

Consider the disclosure stage. Let G, ) be the induced distribution of prices, i.e., G p) () =
Prip(op(s)) < z] for any z, taking into account both the randomization over the score and
the agent’s strategy. Let 7 = p(N) + ¢4. We show that the following holds, mirroring our
characterization of the highest equilibrium threshold (HE):

T = ¢d < EG(U,p) [ZL‘|1’ < T]a (20)

7' —¢a> Eq,  [xlr < T,V > T (21)

Let us argue why (20) holds. Since 7 — ¢4 = p(N), it suffices to show that p(IN) is weakly less
than Eg,  [z[r < 7]. Observe that with probability 1, p(op(s)) is at least p(NN): if p(op(s))
were strictly less than p(N), the agent could profitably deviate to sending message N and
obtaining a strictly higher price. But this implies that p(N) < E[p(op(s))|p(op(s)) < 7] =
Eg,, [zlz < 7].

To see why (21) holds, suppose for contradiction that 7 — ¢q < Eg,, , [plp < 7"] for some
7" > 7. By Lemma 5, there exists 7 > 7 such that 7' — ¢4 = Eg, , [p|p < 7']. Consider the
strategy profile (o, p’) defined as follows. The agent’s strategy ¢’ is the same as o except that
the agent conceals a score s if p(o(s)) < 7/. For m # N, p'(m) = p(m), and for m = N, the
price is p'(m) = Eg,, , [r|lx < 7] > Eg,, ,[x|t < 7] > p(m). Notice that since any message m
that is disclosed in (¢, p') is also disclosed in (o, p), the prices p" are defined on path via Bayes
rule.

To see that (o', p') is an equilibrium, consider any score s such that p(o(s)) > 7 with positive
probability. Therefore, following a score of s, the agent optimally randomizes over messages
other than N that lead to the same (and maximal) price which, abusing notation, we denote
by p(o(s)). Since p(m) = p'(m) for all m # N, o(s) is optimal among all strategies that send
N with probability 0 given prices p’. Therefore, for such a score it is optimal to follow o(s) if
P (o(s)) > 71 =p'(N) + ¢gq, and to conceal if p'(o(s)) < 7/, as prescribed by o’. Now consider
a score s such that p(o(s)) < 7 with probability 1. For such a score, it is optimal given prices
p to conceal, i.e., for any message m # N that the agent can send following a score of s,
p(m) — ¢g < p(N). Since p'(m) = p(m) and p/(N) > p(N), it is also optimal to conceal given
prices p/, as prescribed by o’.

Now consider the testing stage. If

b > / (4 + 6)ldG o), (22)

+¢d

then there exists an equilibrium in the evidence-test-fee structure in which the agent has the
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asset tested with probability 0. The argument parallels that of Lemma 1. In particular,
consider a strategy profile (¢/,p’) such that that o}, = 0, off-path the agent follows o(s) if
P(o(s)) > p+ ¢a (p'(0(s)) is well-defined as argued above) and otherwise conceals, and the
prices are p'(N) = p and p(m) = p'(m) for all m # N. Since the set of disclosed messages
in (o,p') is a subset of that in (o,p), an argument similar to above shows that the agent’s
disclosure strategy is sequentially rational. Also, by deviating to taking the test, the agent

receives an expected payoff lower than g,

+éd 0 0

/M pdG o p) + / [ = aldGop) = ¢1 = pu + / [z = (1 + ¢a))dG o) — b0 < i,
2] ptda HtPd

where the inequality follows from (22). Therefore, the revenue in an adversarial equilibrium is

at most zero, which is obtained by any test-fee structure with zero fees. So suppose that (22)

is violated and consider a test-fee structure (G, ), ¢).

By Lemma 3, 7 is a weak-highest equilibrium threshold of the test-fee structure. Also, since
(22) is violated, by Lemma 1 the test is taken with probability 1 in all equilibria. Therefore,
the revenue in an adversarial equilibrium of this test-fee structure is equal to the revenue in an
adversarial equilibrium of the evidence-test-fee environment.

We now consider the case or € [0,1). Notice that in this case

0 0
o2 [ o= (V) + 0l = [ [ (4 00ldGe,
p(N)+¢a ptoa
so (22) holds. The argument above shows that the revenue in an adversarial equilibrium is at

most zero, which can be obtained in a test-fee structure with any test and zero fees. 0

B.6 Using Only Disclosure Fees

Proposition 9. Suppose that the intermediary is restricted to using only disclosure fees. Then
there exists a test-fee structure (G, @) in the step-exponential class, where G(2) = 1, that is

robustly optimal.

Proof. Consider any optimal test-fee structure (G’, ¢’) when the intermediary is restricted to a
disclosure fee of zero (an optimal test-fee structure exists by an argument similar to Lemma 4).
Lemma 11 shows that that there exists a test-fee structure (G, ¢) with ¢ < ¢} in the step-
exponential-step class that generates a weakly higher revenue. Since ¢; < ¢}, the intermediary
receives a weakly higher revenue from the disclosure fee in (G, ¢) than in (G', ¢'), so (G, ¢) also
maximizes revenue when the intermediary is restricted to a testing fee of zero.

Suppose that G(72) < 1 and that (G, ¢) is parameterized by k, 79, ..., 73 as defined in (5),

(6), and (7). The robust revenue of this test-fee structure from the disclosure fee is ¢4(1 — k) =
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(11 —70)(1 — k). Note that 75 < 73 since G(12) < 1 = G(73). For gy € [0,1] and &5 € [0, 73 — T2,
consider (G, .,,¢) parameterized by x',7),..., 7 such that ¥ = kK — &1, 75 = T + €2, and
1/ =1, for i = 0,1, 3. We show that there exist 1,5 > 0 such that G, ., is a mean-preserving
contraction of G and gives a strictly higher revenue from a disclosure fee of (73 —79)(1 — K +£2)
and therefore is robustly optimal.

For small enough 1, £ so that G¢, .,(75) < 1, G81 ., 1s a well defined distribution function.

Notice that G, ., is decreasing in &1, and fg Goey(8)ds — fg 1.0 (8)ds > f Go,(8)ds —
Qﬁ Geyey(8)ds = e1(11 — 1) > 0. Since f; Goey(s)ds — fe s)ds is continuous in €5 and goes
to 0 as 9 goes to 0, for small enough e, > 0 there exists €; > 0 such that fe Geyen(8)ds =
f; G(s)ds. Moreover, G, ., (s) < G(s) for s < s*, and G., ,(s) > G(s) for s > s*, where
s* =1y — (11 — 1) log v is the unique intersection of G, ., and G on the interval (72, 72 + €2).

Thus, G, ., is a mean-preserving contraction of G. O
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