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B.1 Proof of Proposition 1 on p. 16

Proof. Consider a test-fee structure (G, φ). If (w-P) is violated, then Lemma 1 shows that

there is an equilibrium with zero revenue and the proposition follows. Suppose that (w-P)

holds. Using integration by parts, we can rewrite (w-P) as φt ≤
∫ θ
µ+φd

[1 − G(s)]ds. This

expression implies that any testing fee that satisfies (w-P) is at most the area above the score

distribution G from µ + φd to θ, shaded dark in Figure 8. The revenue from disclosure is at

most φd Pr[s ≥ θ + φd], shaded light in Figure 8. This is because in any equilibrium, a score

strictly less than θ + φd strictly prefers to conceal. So the total revenue is at most the shaded

area above G. Since G is a mean-preserving contraction of the prior distribution,

µ =

∫ θ

θ

sdG(s) =

∫ θ

θ

[1−G(s)]ds+ θ

and therefore the area above G is equal to RF = µ− θ.
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Figure 8: The revenue from the testing fee is shaded dark. The revenue from the disclosure fee is at most the
area shaded light.

Now suppose that there exists an equilibrium with a revenue of RF − ε. Since the revenue

is at most the shaded area above G and the total area above G is RF , the unshaded area above

G is at most ε. In particular, the area above G from θ + φd to µ+ φd is at most ε. Since G is

monotone,

φt ≤
∫ θ

µ+φd

[1−G(s)]ds ≤
(
θ − (µ+ φd)

µ− θ

)∫ µ+φd

θ+φd

[1−G(s)]ds ≤
(
θ − µ
µ− θ

)
ε.
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Therefore, as ε goes to zero, the revenue from the testing fee goes to zero as well. Thus, to

complete the proof we only need to show that the revenue from the disclosure fee also goes to

zero.

For ε small enough so that µ+ φd ≥ θ + φd +
√
ε, we have

ε ≥
∫ µ+φd

θ+φd

[1−G(s)]ds ≥
∫ θ+φd+

√
ε

θ+φd

[1−G(s)]ds ≥
√
ε(1−G(θ + φd +

√
ε)),

where the third inequality follows since G is monotone. That is, the probability that the score

is more than τ ≡ θ + φd +
√
ε is at most

√
ε. Thus, if there exists an equilibrium threshold

above τ , the disclosure probability in that equilibrium is at most
√
ε. To show that there exists

an equilibrium threshold above τ , we apply Lemma 3 by showing that E[s|s ≤ τ ] > τ − φd.
The expectation of G can be written as

µ = G(τ)E[s|s ≤ τ ] + (1−G(τ))E[s|s > τ ] ≤ G(τ)E[s|s ≤ τ ] + (1−G(τ))θ.

Rearranging terms yields

θ − E[s|s ≤ τ ] ≤ θ − µ
G(τ)

≤ θ − µ
1−
√
ε
.

Therefore, since τ = θ + φd +
√
ε and θ < µ, for ε < (µ−θ

1+θ
)2 we have

τ − φd = θ +
√
ε <

µ− θ
√
ε

1−
√
ε

= θ − θ − µ
1−
√
ε
≤ E[s|s ≤ τ ],

and therefore by Lemma 3 there is an equilibrium threshold higher than τ .

To complete the proof, recall that φd < θ − µ, so the revenue from the disclosure fee is no

more than
√
ε(θ − µ). Thus the total revenue is at most ( θ−µ

µ−θ )ε+
√
ε(θ − µ). �

B.2 Proof of Proposition 4 on p. 25

We first simplify the step-exponential-step distribution identified in Section 5 when the testing

fee is zero.

Lemma 12. Suppose that the prior distribution is log-concave and consider an optimal step-

exponential-step test-fee structure (G, φ) defined by (5), (6), and (7). If φt = 0, then τ2 =

µ+φd < θ and G(τ2) = 1. Additionally, there exist δ, σ > 0 such that δ+
∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds

for any τ ∈ [τ1 − σ, τ2].

Proof. For the optimal testing fee to be zero, the area above G from µ+ φd to θ must be zero,

and hence G(µ+ φd) = 1. From Lemma 11, G(τ2) = 1.
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The mean-preserving constraints which require that G is θ − µ can be written as

θ − µ =

∫ τ1

θ

G(s)ds+

∫ τ2

τ1

κe
s−τ1
τ1−τ0 ds+ (θ − τ2)

= κ(τ1 − τ0) + (τ1 − τ0)κe
s−τ1
τ1−τ0 |τ2τ1 + (θ − τ2)

= (τ1 − τ0) + θ − τ2,

where the third inequality follows because κ = e
τ1−τ2
τ1−τ0 is pinned down by the mean-preserving

contraction conditions. We must therefore have τ2 = µ+ (τ1 − τ0) = µ+ φd.

We now show that the mean-preserving contraction constraints must be slack on interval

[τ1, τ2]. Notice that log-concavity implies continuity in the interior, which is used in the later

arguments.

We first claim that F (τ1) ≥ G(τ1) = e
− µ−τ0
τ1−τ0 . Suppose that F (τ1) < G(τ1). Then F (x) <

G(x) for any x ∈ [τ0, τ1), which implies the constraint must be slack on the interval [τ0, τ1)

because
∫ x
θ
F (s)ds =

∫ τ1
θ
F (s)ds −

∫ τ1
x
F (s)ds >

∫ τ1
θ
G(s)ds −

∫ τ1
x
G(s)ds =

∫ x
θ
G(s)ds. Since

the integrals are continuous, the constraint is also slack at τ1. So we can construct a new

distribution parameterized by τ ′1 = τ1 − ε and τ ′0 = τ0 − ε, the distribution on [τ1, θ] does not

change so all the constraints on [τ1, θ] are still satisfied. Also since the original constraints

on [θ, τ1] are slack, they are still satisfied for small ε. By charging the same disclosure fee

φd = τ1− τ0, this new distribution induces a higher disclosure probability, which contradicts G

being optimal.

If F (τ1) = G(τ1), the same argument goes through if the constructed distribution does not

violate the mean-preserving constraints. If the constraint is slack at τ1, then all the constraints

at points lower than τ1 are slack, so the constructed distribution is still a profitable deviation.

If the constraint binds at τ1, the right derivative of F at τ1 must be greater than the right

derivative of G. Also, the left derivative of F must be greater than that of G by log-concavity.

So the local change of the distribution doesn’t violate any constraints, which leads to a profitable

deviation.

We must therefore have F (τ1) > G(τ1) and the constraint is slack at τ1 due to the continuity

of F . Since the mean-preserving constraint is also slack at τ2 and the integrals of G and F are

continuous, there exists δ, σ > 0 such that δ +
∫ τ ′
θ
G(s)ds ≤

∫ τ ′
θ
F (s)ds for any τ ∈ [τ1 − σ, τ1],

and further, δ +
∫ τ2
θ
G(s)ds ≤

∫ τ2
θ
F (s)ds. Moreover, from the log-concavity of F and the facts

that F (τ1) > G(τ1) and F (τ2) < G(τ2), F crosses the exponential part of G from above exactly

once. To see this, notice that log(F ) is concave and log(G) is linear on [τ1, τ2], and a concave

function can only cross a linear function from above once. Letting x∗ denote the intersection

point, we have F (x) > G(x) for x ∈ [τ1, x
∗) and F (x) < G(x) for x ∈ (x∗, τ2]. Now for any
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τ ′ ∈ [x∗, τ2] we have

δ +

∫ τ ′

θ

G(s)ds = δ +

∫ τ2

θ

G(s)ds−
∫ τ2

τ ′
G(s)ds ≤

∫ τ2

θ

F (s)ds−
∫ τ2

τ ′
F (s)ds =

∫ τ ′

θ

F (s)ds.

Similarly, for any τ ′ ∈ [τ1, x
∗] we have

δ +

∫ τ ′

θ

G(s)ds = δ +

∫ τ1

θ

G(s)ds+

∫ τ ′

τ1

G(s)ds ≤
∫ τ1

θ

F (s)ds−
∫ τ ′

τ1

F (s)ds =

∫ τ ′

θ

F (s)ds.

To complete the proof, we show that τ2 < θ. If τ2 = θ, then since G is log-linear on

[τ1, τ2] and F log-concave on that interval and the mean-preserving contraction constraints are

satisfied, it must be that G ≥ F over the interval [τ1, τ2], and in particular, G(τ1) ≥ F (τ1). But

as we argued above, G(τ1) < F (τ1), which is a contradiction. �

Given Lemma 12 we now prove Proposition 4.

Proof of Proposition 4. By Lemma 11, if there exists a robustly optimal test-fee structure with

zero testing fee, then there exists a robustly optimal test-fee structure (G, φ) in the step-

exponential-step class with zero testing fee. Suppose thatG is parameterized by κ and τ0, . . . , τ3.

This test G must satisfy the properties of Lemma 12. Given (G, φ), we construct a class of

test-fee structures (Gε, φε) for ε ≥ 0 as follows

Gε(s) =


κ if s = τ0

κe(s−τ1(ε))/(τ1(ε)−τ0) if s ∈ [τ1(ε), τ2(ε)]

F (s) if s ∈ [τ3(ε), θ],

where τ1(ε) = τ1−ε, τ2(ε) is specified below, and τ3(ε) is defined so that Gε is flat from τ2(ε) to

τ3(ε), that is, τ3(ε) = F−1(min(κe(τ2(ε)−τ1(ε))/(τ1(ε)−τ0), 1)). Let φd(ε) = φd − ε and define φt(ε)

such that (w-P) holds with equality.

We define τ2(ε) so that the integrals of Gε and F are the same. To show that such τ2(ε)

exists, we show that there is a unique solution x to

θ − µ = κ(τ1 − ε− τ0) +

∫ x

τ1−ε
κe

s−τ1+ε
τ1−ε−τ0 ds+ κe

x−τ1+ε
τ1−ε−τ0 (τ3(x)− x) +

∫ θ

τ3(x)

F (s)ds

= κe
x−τ1+ε
τ1−ε−τ0 (τ1 − ε− τ0 + τ3(x)− x) +

∫ θ

τ3(x)

F (s)ds,

where τ3(x) = F−1(min(κe(x−τ1+ε)/(τ1−ε−τ0), 1)). The derivative of the right hand side with
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respect to x is

κe
x−τ1−ε
τ1−ε−τ0

(
τ1 − ε− τ0 + τ3 − x

τ1 − ε− τ0

+ τ ′3(x)− 1

)
− τ ′3(x)F (τ3(x)).

The derivative τ ′3(x) exists because F is assumed to have a positive density. Now evaluate this

derivative at ε = 0, x = τ2, where τ3(x) = θ and 1 = F (τ3(x)) = κe
τ2−τ1
τ1−τ0 . So the terms with

τ ′3(x) cancel out and the derivative is

θ − τ2

τ1 − τ0

> 0.

Therefore, by the implicit function theorem, τ2(ε) is well-defined and |τ ′2(ε)| < ∞ for small

enough ε. It must be that Gε(τ2(ε)) ≤ 1, implying that Gε is a well-defined distribution.

Otherwise Gε is above G which means that the integral of Gε is larger than the integral of F .

Notice that τ2(0) = τ2, which implies that (G0, φ(0)) = (G, φ).

We next show that for small enough ε > 0, Gε is a mean-preserving contraction of F . That

is,
∫ τ
θ
Gε(s)ds ≤

∫ τ
θ
F (s)ds for any τ ∈ [θ, θ]. This inequality follows for all τ ≤ τ1(ε) because

G and Gε are identical below τ1(ε), and G is a mean-preserving contraction of F . Similarly,

the inequality holds for all τ ≥ τ2(ε) because Gε is weakly higher than F above τ2(ε). For

[τ1(ε), τ2(ε)], recall from Lemma 12 that there exist δ, σ > 0 such that δ+
∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds

for any τ ∈ [τ1 − σ, τ2]. Now choose ε small enough so that
∫ τ
θ
Gε(s)ds ≤ δ +

∫ τ
θ
G(s)ds for

any τ ∈ [τ1 − σ, τ2] and further that τ1 − σ ≤ τ1(ε). The two inequalities then imply that∫ τ
θ
Gε(s)ds ≤ δ +

∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds for any τ ∈ [τ1(ε), τ2(ε)].

To complete the proof, we show that for small enough ε > 0, the revenue guarantee of

(Gε, φ(ε)) is strictly higher than that of (G, φ). First notice that τ1(ε) is a weak-highest equi-

librium threshold for the test-fee structure (Gε, φ(ε)). This is because Gε is exponential from

τ1(ε) to τ2(ε) and flat from τ2(ε) to µ+ φd(ε). The intermediary’s revenue is

R(ε) ≡ φt(ε) + φd(ε)
(
1−Gε(τ1(ε))

)
=

∫ θ

µ+φd(ε)

[s− µ− φd(ε)]dGε(s) + φd(ε)
(
1−Gε(τ1(ε))

)
= θ − µ− φd(ε)−

∫ θ

µ+φd(ε)

Gε(s)ds+ φd(ε)−
∫ τ1(ε)

θ

Gε(s)ds

=

∫ µ+φd(ε)

τ1(ε)

Gε(s)ds

= κe
τ2(ε)−τ1(ε)
τ1(ε)−τ0

(
2(τ1(ε)− τ0) + µ− τ2(ε)

)
− (τ1(ε)− τ0)κ.

To show that there exists ε > 0 with R(ε) > R(0), we consider the derivative of revenue with
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respect to ε, R′(ε). This derivative exists because τ ′1(ε) = −1, and τ ′2(ε) exists and |τ ′2(ε)| < −∞
as argued above. Now let λ(ε) = τ2(ε)−τ1(ε)

τ1(ε)−τ0 and write

R′(ε) = κeλ(ε)

(
λ′(ε)

(
2(τ1(ε)− τ0) + µ− τ2(ε)

)
− 2− τ ′2(ε)

)
+ κ.

We now evaluate this derivative at ε = 0. The fact that G is a mean-preserving spread of F

implies that κ = e
− µ−τ0
τ1−τ0 and therefore κeλ(0) = 1. Also 2(τ1 − τ0) + µ− τ2 = φd. So we have

R′(0) = λ′(0)φd − 2− τ ′2(0) + κ

= τ ′2(0) + 1− τ2 − τ1

τ1 − τ0

− 2− τ ′2(0) + κ

= κ− τ2 − τ1

τ1 − τ0

− 1

= e
τ0−µ
τ1−τ0 +

τ0 − µ
τ1 − τ0

− 1

> 0.

The inequality follows because ex > 1 + x for x 6= 0. Thus R(ε) > 0 for small enough ε. This

contradicts the optimality of (G, φ). �

B.3 Proof of Proposition 5 on p. 26

Proof. Consider a test-fee structure with a zero disclosure fee. By (w-P), the revenue is

φt ≤
∫ θ

µ

(s− µ)dG(s) = (θ − µ)−
∫ θ

µ

G(s)ds.

This revenue is maximized when the inequality holds as an equality and
∫ θ
µ
G(s)ds is minimized.

Since
∫ θ
µ
G(s)ds ≥

∫ θ
µ
F (s)ds for any G that is a mean-preserving contraction of F ,

∫ θ
µ
G(s)ds

is minimized when
∫ θ
µ
G(s)ds =

∫ θ
µ
F (s)ds. So the robustly optimal revenue is

∫ θ
µ

(s− µ)dF (s),

which can be achieved by a binary test G with sH = E[θ|θ ≥ µ], sL = E[θ|θ < µ] and

G(sL) = Pr[θ < µ]. To see this, first note that G ∈ Γ(F ) because G is induced by a test that

maps θ < µ to sL and θ ≥ µ to sH . Second, the revenue is
∫ θ
µ

(s− µ)dG(s) = (1−G(sL))(sH −

µ) = Pr(θ ≥ µ) (E[θ|θ ≥ µ]− µ) =
∫ θ
µ

(s− µ)dF (s). �

B.4 Proof of Proposition 6 on p. 27

Proof. Suppose G ∈ Γ(F ) is restricted to have binary support s1, s2 ∈ [θ, θ]. Without loss of

generality, let s1 < s2. Notice that for any s1, s2, the mean-preserving contraction constraints
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pins down G(s1) = s2−µ
s2−s1 . From arguments similar to those used in proving Lemma 2, we focus

on φt, φd ≥ 0. To satisfy (w-P), φd ≤ s2 − µ. For any φd ∈ [0, s2 − µ], (w-HE) implies that

the lowest weak-highest equilibrium threshold is τ = s1 + φd ∈ [s1, s1 + s2 − µ) ⊂ [s1, s2), so

G(τ) = G(s1).

Thus, the intermediary’s problem can be written as

max
φt,φd,s1,s2

φt + φd (1−G(s1)) (19)

s.t. φt ≤
∫ θ̄

µ+φd

[s− (µ+ φd)]dG(s)

φd ∈ [0, s2 − µ]

θ ≤ s1 < µ < s2 ≤ θ

G ∈ Γ(F ).

Clearly the constraint for φt must bind, so φt =
∫ θ̄
µ+φd

[s−(µ+φd)]dG(s) = (s2−µ−φd)(1−G(s1)).

Plugging in φt, we have φt + φd(1−G(s1)) = (s2 − µ)(1−G(s1)).

The problem can be further simplified to

max
φd,s1,s2

(s2 − µ)(1−G(s1))

s.t. φd ∈ [0, s2 − µ]

θ ≤ s1 < µ < s2 ≤ θ

G ∈ Γ(F ).

Since φd does not enter the objective function, for any optimal test, any φd ∈ [0, s2 − µ]

and φt = (s2 − µ − φd)(1 − G(s1)) form an optimal fee structure. In particular, φd = 0

and φt = (s2 − µ)(1 − G(s1)) are optimal. Recall that from Proposition 5, a binary test

s1 = E[θ|θ < µ], s2 = E[θ|θ ≥ µ] is optimal when the intermediary is restricted to using only a

testing fee. So s1 = sL = E[θ|θ < µ], s2 = sH = E[θ|θ ≥ µ] is also an optimal test for problem

(19). �

B.5 Proof of Proposition 8 on p. 28

Proof. Consider an evidence-test-fee structure denoted by fees (φt, φd), an unbiased test T :

Θ→ ∆S, and an evidence structure M : S ⇒M such that for each s, M(s) is a Borel space.

A strategy profile (σ, p) consists of the agent’s strategy σ = (σT , σD), where σT ∈ [0, 1] and

σD maps s ∈ S to ∆(M(s) ∪ {N}), and the market price p : M → [θ, θ̄]. Let (σ, p) be an
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adversarial equilibrium. We first consider the case in which the agent has the asset tested with

probability 1, that is σT = 1.

Consider the disclosure stage. LetG(σ,p) be the induced distribution of prices, i.e., G(σ,p)(x) =

Pr[p(σD(s)) ≤ x] for any x, taking into account both the randomization over the score and

the agent’s strategy. Let τ ≡ p(N) + φd. We show that the following holds, mirroring our

characterization of the highest equilibrium threshold (HE):

τ − φd ≤ EG(σ,p)
[x|x ≤ τ ], (20)

τ ′ − φd > EG(σ,p)
[x|x ≤ τ ′],∀τ ′ > τ. (21)

Let us argue why (20) holds. Since τ − φd = p(N), it suffices to show that p(N) is weakly less

than EG(σ,p)
[x|x ≤ τ ]. Observe that with probability 1, p(σD(s)) is at least p(N): if p(σD(s))

were strictly less than p(N), the agent could profitably deviate to sending message N and

obtaining a strictly higher price. But this implies that p(N) ≤ E[p(σD(s))|p(σD(s)) ≤ τ ] =

EG(σ,p)
[x|x ≤ τ ].

To see why (21) holds, suppose for contradiction that τ ′′ − φd ≤ EG(σ,p)
[p|p ≤ τ ′′] for some

τ ′′ > τ . By Lemma 5, there exists τ ′ > τ such that τ ′ − φd = EG(σ,p)
[p|p ≤ τ ′]. Consider the

strategy profile (σ′, p′) defined as follows. The agent’s strategy σ′ is the same as σ except that

the agent conceals a score s if p(σ(s)) ≤ τ ′. For m 6= N , p′(m) = p(m), and for m = N , the

price is p′(m) = EG(σ,p)
[x|x ≤ τ ′] ≥ EG(σ,p)

[x|x ≤ τ ] ≥ p(m). Notice that since any message m

that is disclosed in (σ′, p′) is also disclosed in (σ, p), the prices p′ are defined on path via Bayes

rule.

To see that (σ′, p′) is an equilibrium, consider any score s such that p(σ(s)) > τ with positive

probability. Therefore, following a score of s, the agent optimally randomizes over messages

other than N that lead to the same (and maximal) price which, abusing notation, we denote

by p(σ(s)). Since p(m) = p′(m) for all m 6= N , σ(s) is optimal among all strategies that send

N with probability 0 given prices p′. Therefore, for such a score it is optimal to follow σ(s) if

p′(σ(s)) > τ ′ = p′(N) + φd, and to conceal if p′(σ(s)) ≤ τ ′, as prescribed by σ′. Now consider

a score s such that p(σ(s)) ≤ τ with probability 1. For such a score, it is optimal given prices

p to conceal, i.e., for any message m 6= N that the agent can send following a score of s,

p(m) − φd ≤ p(N). Since p′(m) = p(m) and p′(N) ≥ p(N), it is also optimal to conceal given

prices p′, as prescribed by σ′.

Now consider the testing stage. If

φt ≥
∫ θ

µ+φd

[x− (µ+ φd)]dG(σ,p), (22)

then there exists an equilibrium in the evidence-test-fee structure in which the agent has the
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asset tested with probability 0. The argument parallels that of Lemma 1. In particular,

consider a strategy profile (σ′, p′) such that that σ′T = 0, off-path the agent follows σ(s) if

p′(σ(s)) > µ + φd (p′(σ(s)) is well-defined as argued above) and otherwise conceals, and the

prices are p′(N) = µ and p(m) = p′(m) for all m 6= N . Since the set of disclosed messages

in (σ′, p′) is a subset of that in (σ, p), an argument similar to above shows that the agent’s

disclosure strategy is sequentially rational. Also, by deviating to taking the test, the agent

receives an expected payoff lower than µ,∫ µ+φd

θ

µdG(σ,p) +

∫ θ̄

µ+φd

[x− φd]dG(σ,p) − φt = µ+

∫ θ̄

µ+φd

[x− (µ+ φd)]dG(σ,p) − φt ≤ µ,

where the inequality follows from (22). Therefore, the revenue in an adversarial equilibrium is

at most zero, which is obtained by any test-fee structure with zero fees. So suppose that (22)

is violated and consider a test-fee structure (G(σ,p), φ).

By Lemma 3, τ is a weak-highest equilibrium threshold of the test-fee structure. Also, since

(22) is violated, by Lemma 1 the test is taken with probability 1 in all equilibria. Therefore,

the revenue in an adversarial equilibrium of this test-fee structure is equal to the revenue in an

adversarial equilibrium of the evidence-test-fee environment.

We now consider the case σT ∈ [0, 1). Notice that in this case

φt ≥
∫ θ

p(N)+φd

[x− (p(N) + φd)]dG(σ,p) ≥
∫ θ

µ+φd

[x− (µ+ φd)]dG(σ,p),

so (22) holds. The argument above shows that the revenue in an adversarial equilibrium is at

most zero, which can be obtained in a test-fee structure with any test and zero fees. �

B.6 Using Only Disclosure Fees

Proposition 9. Suppose that the intermediary is restricted to using only disclosure fees. Then

there exists a test-fee structure (G, φ) in the step-exponential class, where G(τ2) = 1, that is

robustly optimal.

Proof. Consider any optimal test-fee structure (G′, φ′) when the intermediary is restricted to a

disclosure fee of zero (an optimal test-fee structure exists by an argument similar to Lemma 4).

Lemma 11 shows that that there exists a test-fee structure (G, φ) with φt ≤ φ′t in the step-

exponential-step class that generates a weakly higher revenue. Since φt ≤ φ′t, the intermediary

receives a weakly higher revenue from the disclosure fee in (G, φ) than in (G′, φ′), so (G, φ) also

maximizes revenue when the intermediary is restricted to a testing fee of zero.

Suppose that G(τ2) < 1 and that (G, φ) is parameterized by κ, τ0, . . . , τ3 as defined in (5),

(6), and (7). The robust revenue of this test-fee structure from the disclosure fee is φd(1−κ) =
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(τ1− τ0)(1− κ). Note that τ2 < τ3 since G(τ2) < 1 = G(τ3). For ε1 ∈ [0, 1] and ε2 ∈ [0, τ3− τ2],

consider (Gε1,ε2 , φ) parameterized by κ′, τ ′0, . . . , τ
′
3 such that κ′ = κ − ε1, τ ′2 = τ2 + ε2, and

τ ′i = τi for i = 0, 1, 3. We show that there exist ε1, ε2 > 0 such that Gε1,ε2 is a mean-preserving

contraction of G and gives a strictly higher revenue from a disclosure fee of (τ1− τ0)(1−κ+ ε2)

and therefore is robustly optimal.

For small enough ε1, ε2 so that Gε1,ε2(τ
′
2) ≤ 1, Gε1,ε2 is a well defined distribution function.

Notice that Gε1,ε2 is decreasing in ε1, and
∫ θ
θ
G0,ε2(s)ds −

∫ θ
θ
Gε1,ε2(s)ds ≥

∫ τ1
θ
G0,ε2(s)ds −∫ τ1

θ
Gε1,ε2(s)ds = ε1(τ1 − τ0) ≥ 0. Since

∫ θ
θ
G0,ε2(s)ds−

∫ θ
θ
G(s)ds is continuous in ε2 and goes

to 0 as ε2 goes to 0, for small enough ε2 > 0 there exists ε1 > 0 such that
∫ θ
θ
Gε1,ε2(s)ds =∫ θ

θ
G(s)ds. Moreover, Gε1,ε2(s) ≤ G(s) for s ≤ s∗, and Gε1,ε2(s) ≥ G(s) for s ≥ s∗, where

s∗ = τ2 − (τ1 − τ0) logα is the unique intersection of Gε1,ε2 and G on the interval (τ2, τ2 + ε2).

Thus, Gε1,ε2 is a mean-preserving contraction of G. �
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