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Abstract

When does a Sender, in a Sender-Receiver game, strictly value commitment? In a setting

with finite actions and finite states, we establish that, generically, Sender values commitment if

and only if he values randomization. In other words, commitment has no value if and only if a

partitional experiment is optimal under commitment. Moreover, if Sender’s preferred cheap-talk

equilibrium necessarily involves randomization, then Sender values commitment. We also ask:

how often (i.e., for what share of preference profiles) does commitment have no value? For any

prior, any independent, atomless distribution of preferences, and any state space: if there are

|A| actions, the likelihood that commitment has no value is at least 1
|A||A| . As the number of

states grows large, this likelihood converges precisely to 1
|A||A| .
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1 Introduction

Commitment is often valuable. In the context of communication, this fact is brought out by

the contrast of Sender’s payoff in Bayesian persuasion versus cheap talk. For any prior, and any

profile of Sender and Receiver’s preferences, Sender’s payoff is always weakly higher under Bayesian

persuasion than in any cheap-talk equilibrium.1 In this paper, we ask: when does commitment make

Sender strictly better off?

Answering this question would contribute to our understanding of circumstances that incentivize

building strong institutions immune to influence (North 1993; Lipnowski, Ravid, and Shishkin 2022)

or building a reputation for a degree of honesty (Best and Quigley 2024; Mathevet, Pearce, and

Stacchetti 2024).

We focus exclusively on environments with finitely many states and actions. We show that,

generically, Sender with commitment values that commitment if and only if he values randomiza-

tion (Theorem 1). In other words, the Bayesian persuasion payoff is achievable in a cheap-talk

equilibrium if and only if a partitional experiment is a solution to the Bayesian persuasion problem.

Moreover, if Sender’s preferred equilibrium in a cheap-talk game necessarily involves randomization,

then Sender values commitment (Theorem 2).

Theorems 1 and 2 respectively consider willingness-to-accept (WTA) and willingness-to-pay

(WTP) for commitment. Theorem 1 considers a Sender endowed with commitment and establishes

that his WTA for commitment is strictly positive if and only if his WTA for use of randomization

is strictly positive. Theorem 2 considers a Sender without commitment (one engaged in cheap

talk) and establishes that his WTP for commitment is strictly positive if his WTA for use of

randomization is strictly positive.

The link between commitment and randomization does not, on its own, address the question

of “how often” (i.e., for what share of preferences), Sender finds commitment (or, equivalently,

randomization) valuable. Theorems 1 and 2 would be of substantially less interest if it were the

case that (in the finite worlds we consider), commitment and randomization are almost always

valuable, with only exceptions being knife-edge cases such as completely aligned or completely

1In fact, Bayesian persuasion provides the tight upper bound on Sender’s equilibrium payoff under any communi-
cation protocol, such as disclosure or signaling.
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opposed preferences.2 We show, however, that this is not the case. In fact, we uncover a potentially

surprising connection between the likelihood that commitment has no value and the cardinality of

the action set.

Formally, let |A| denote the cardinality of the action set. Suppose that for each action-state

pair, we draw Sender’s utility i.i.d. from some distribution F and we draw Receiver’s utility i.i.d.

from some distribution G. We assume that Sender’s utility draw is independent of Receiver’s. For

any number of states, for any interior prior, for any atomless distributions of preferences (F and

G), the likelihood that commitment has no value is bounded below by 1

|A||A| ; moreover, as the

number of states grows large, the likelihood that commitment has no value converges precisely to

1

|A||A| (Theorem 3). So, if the action set is binary and there are many states, the share of preference

profiles for which commitment has no value is approximately 1
4 .

Illustrative example

The workhorse example in the Bayesian-persuasion literature is a prosecutor (Sender) trying to

convince a judge (Receiver) to convict a defendant who is guilty or innocent. The judge’s preferences

are such that she prefers to convict if the probability of guilt is weakly higher than the probability

of innocence. The prosecutor has state-independent preferences and always prefers conviction. The

prior probability of guilt is 0.3.

If the environment were cheap talk, there is a unique equilibrium outcome whereby the judge

ignores the prosecutor and always acquits the defendant. If the prosecutor can commit to an ex-

periment about the state, however, he will conduct a stochastic experiment that indicates guilt

whenever the defendant is guilty and indicates guilt with probability 3
7 when the defendant is inno-

cent (Kamenica and Gentzkow 2011). This experiment induces the judge to convict the defendant

with 60% probability. The prosecutor is thus strictly better off than under cheap talk.

Our Theorem 1 tells us that the two facts, (i) the prosecutor’s optimal experiment involves

randomization and (ii) the prosecutor does better under commitment, imply each other. Of course,

the prosecutor-judge example was designed to be extremely simple, so in this particular example

2Denoting Sender’s utility by uS and Receiver’s utility by uR, it is easy to see that when uS = uR, neither
commitment nor randomization is valuable (because full information is optimal and achievable via a cheap-talk
equilibrium). Similarly, when uS = −uR, neither commitment nor randomization are valuable (because no information
is optimal and achievable via a cheap-talk equilibrium).
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one can easily determine the optimal experiment and the value of commitment without our theorem.

In more complicated environments, however, Theorem 1 can simplify the determination of whether

commitment is valuable. Except in certain cases, such as uniform-quadratic (Crawford and Sobel

1982) or transparent preferences (Lipnowski and Ravid 2020), cheap-talk games can be difficult to

solve. Theorem 1 can then be used to determine whether commitment is valuable without solving for

cheap talk equilibria, simply by computing the Bayesian-persuasion optima and checking whether

they include a partitional experiment.3

The prosecutor-judge example also illustrates the distinction between the if-and-only-if result

in Theorem 1 and the unidirectional Theorem 2. Recall that Theorem 1 shows that WTA for

commitment is strictly positive if and only if WTA for randomization is strictly positive. Theorem

2, by contrast, establishes only that WTP for commitment is strictly positive if WTA for random-

ization is strictly positive. It is not the case that WTP for commitment is strictly positive only if

WTA for randomization is strictly positive. This is easily seen in the prosecutor-judge example. In

the cheap-talk game, the prosecutor has no value for randomization: with or without it, he never

obtains any convictions. Yet, the prosecutor obviously values commitment.

Finally, the prosecutor-judge example also helps illustrate what Theorem 1 does not say. Pro-

hibiting randomization does not mean commitment is not valuable. Suppose that the prosecutor

is endowed with commitment, but is legally obliged to use only partitional experiments. In that

case, the prosecutor will provide a fully informative experiment, obtaining a conviction with 30%

probability. That, of course, is still better than his cheap-talk payoff of no convictions.

Related literature

Our paper connects the literatures on cheap talk (Crawford and Sobel 1982) and Bayesian per-

suasion (Kamenica and Gentzkow 2011). Min (2021) and Lipnowski, Ravid, and Shishkin (2022)

examine environments with limited commitment that are a mixture of cheap talk and Bayesian

3Recent research provides a large toolbox for solving Bayesian-persuasion problems, including concavification
(Kamenica and Gentzkow, 2011), price-theoretic approaches (Kolotilin, 2018; Dworczak and Martini, 2019), duality
(Dworczak and Kolotilin, 2024), and optimal-transport theory (Kolotilin, Corrao, and Wolitzky, 2023). Moreover,
a burgeoning literature in computer science studies computational approaches to Bayesian persuasion; see Dughmi
(2017) for a survey.
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persuasion.4 In contrast, we focus on the question of when cheap talk and Bayesian persuasion

yield the same payoff to Sender.

Best and Quigley (2024) examine the circumstances under which Sender without commitment

who encounters a sequence of short-run receivers can attain his persuasion payoff via reputation

building. They assume that Sender’s past messages are observable but the mixed strategies em-

ployed are not. Consequently, the effectiveness of partitional experiments play an important role

in their analysis. They establish that if Sender has transparent preferences and the action space is

finite, then generically, Sender values randomization unless a completely uninformative experiment

is optimal.

Also closely related, Corrao and Dai (2023) examine Sender’s payoff under cheap talk, under

Bayesian persuasion, and under mediation. Trivially, Sender’s payoff is weakly lower under cheap

talk than under mediation than under Bayesian persuasion. Under the assumption that Sender

has state-independent preferences, Corrao and Dai (2023) establish that, Sender does not value

commitment if and only if his payoffs are the same under mediation and Bayesian persuasion.

Glazer and Rubinstein (2006) and Sher (2011) consider disclosure games and derive conditions

on preferences that imply Receiver values neither commitment nor randomization.

Our results further connect to the research that endows Sender with private information (Perez-

Richet 2014; Koessler and Skreta 2023) and the research that examines how to microfound Sender’s

commitment via repeated interactions (Best and Quigley 2024; Mathevet, Pearce, and Stacchetti

2024).

A number of papers examine when a monotone partition is optimal in Bayesian persuasion.

Assuming posterior-mean preferences, Dworczak and Martini (2019) derive a condition (termed

affine-closure) that is equivalent to optimality of a monotone partition. Allowing for slightly more

general preferences, Ivanov (2021) establishes that a supermodularity-like condition implies the

optimality of a monotone partition.

More distantly, we appertain to the literature on partial commitment in mechanism design

(Skreta 2006; Doval and Skreta 2022).

4Lin and Liu (2024) consider a form of limited commitment, based on the observability of the distribution of
messages, that is not a mixture of cheap talk and Bayesian persuasion.
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2 Set-up and definitions

Preference and beliefs

Receiver (she) has a utility function uR (a, ω) that depends on her action a ∈ A and the state of the

world ω ∈ Ω. Both A and Ω are finite; our results rely heavily on this assumption.5 For any finite

set X, we denote its cardinality by |X|. Sender (he) has a utility function uS (a, ω) that depends

on Receiver’s action and the state. The players share an interior common prior µ0 on Ω. For each

player i, we say action a∗ is i’s ideal action in ω if a∗ ∈ argmaxa∈A ui(a, ω).

Genericity

Since our theorems will hold “generically,” we now formalize that notion. We refer to the triplet

(uS , uR, µ0) as the (preference-prior) environment. The set of all environments is R2 |A| |Ω|×∆Ω.6 A

set of environments is generic if its complement has zero Lebesgue measure in R2 |A| |Ω|×∆Ω. When

we say that a claim holds generically, we mean that it holds for a generic set of environments.7

Cheap talk, Bayesian persuasion, and value of commitment

Let M be a finite message space with |M | > |A|. Sender chooses a messaging strategy σ : Ω → ∆M .

Receiver chooses an action strategy ρ : M → ∆A.

A profile of strategies (σ, ρ) induces expected payoffs

Ui(σ, ρ) =
∑
ω,m,a

µ0(ω)σ(m|ω) ρ(a|m)ui(a, ω) for i = S,R.

A profile (σ∗, ρ∗) is S-BR if σ∗ ∈ argmaxσ U(σ, ρ∗). A profile (σ∗, ρ∗) is R-BR if ρ∗ ∈

argmaxρ UR(σ
∗, ρ).

Sender’s ideal payoff is the maximum US induced by any profile.

5At the risk of being excessively philosophical, we consider environments with finite A and Ω to be more realistic
than any alternative. The use of infinite sets often provides tractability, but rarely improves realism.

6For any finite set X, we denote the set of all distributions on X by ∆X.
7Lipnowski (2020), who focuses on finite action and state space as we do, establishes that commitment has no value

when Sender’s value function over beliefs is continuous. Such continuity holds for a zero-measure set of environments
whereas we focus on results that hold generically.
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A cheap-talk equilibrium is a profile that satisfies S-BR and R-BR.8 We define (Sender’s) cheap-

talk payoff as the maximum US induced by a cheap-talk equilibrium.9

A persuasion profile is a profile that satisfies R-BR. The (Bayesian) persuasion payoff is the

maximum US induced by a persuasion profile.10 We refer to a persuasion profile that yields the

persuasion payoff as optimal.

We say that commitment is valuable if the persuasion payoff is strictly higher than the cheap-talk

payoff. Otherwise, we say commitment has no value.

Partitional strategies and value of randomization

A messaging strategy σ is partitional if for every ω, there is a message m such that σ (m|ω) = 1.

A profile (σ, ρ) is a partitional profile if σ is partitional.11 The persuasion partitional payoff is the

maximum US induced by a partitional persuasion profile. The cheap-talk partitional payoff is the

maximum US induced by a partitional cheap-talk equilibrium.12

We say that committed Sender values randomization if the persuasion payoff is strictly higher

than the persuasion partitional payoff. We say that cheap-talk Sender values randomization if the

cheap-talk payoff is strictly higher than the cheap-talk partitional payoff.

3 Value of commitment: willingness-to-accept

In this section, we consider a Sender with commitment power, who can choose his messaging strategy

prior to being informed of the state. We ask whether this commitment power makes Sender strictly

8This definition may seem unconventional since it uses Nash equilibrium, rather than perfect Bayesian equilibrium,
as the solution concept. In cheap-talk games, however, the set of equilibrium outcomes (joint distributions of states,
messages, and actions) is exactly the same whether we apply Nash or perfect Bayesian as the equilibrium concept.
The formulation in terms of Nash equilibria streamlines the proofs.

9Throughout, we examine the value of commitment to Sender; hence the focus on Sender’s payoff. The set of
equilibrium payoffs is compact so a maximum exists. We are interested in whether Sender can attain his commitment
payoff in some equilibrium, so it is natural to focus on Sender-preferred equilibria. Except when no information is
the commitment optimum, it cannot be that every cheap-talk equilibrium yields the commitment payoff since every
cheap-talk game admits a babbling equilibrium.

10This definition implicitly selects a Sender-preferred equilibrium of the persuasion game, but Lipnowski, Ravid,
and Shishkin (2024) establish that, with finite A and Ω, Sender’s equilibrium payoff in a persuasion game is generically
unique.

11Our focus is on the connection between Sender’s value of commitment and Sender’s randomization. Consequently,
the definition of a partitional profile only concerns Sender’s strategy. That said, along the way we will establish a
result about Receiver playing pure strategies (see Lemma 5).

12A partitional cheap-talk equilibrium always exists because the babbling equilibrium outcome can be supported
by Sender always sending the same message. Consequently, the cheap-talk partitional payoff is well defined.
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better off. We link the value of commitment to Sender’s behavior under commitment, in particular

to whether Sender has a strict preference for randomization.

Theorem 1. Generically, commitment is valuable if and only if committed Sender values random-

ization.

For an intuition about the only-if direction, suppose that there is a partitional optimal persua-

sion profile (σ, ρ). Let Mσ be the set of messages that are sent in equilibrium. For each m ∈ Mσ,

let Ωm be the set of states that lead to message m, and let µm be the belief induced by m. For a

generic set of environments, Receiver’s optimal action given belief µm (call it am) is unique. Since

A is finite, am must be the uniquely optimal action in a neighborhood of beliefs around µm. Subtly,

this implies that every action am taken in equilibrium must be Sender’s preferred action, among the

actions taken in equilibrium, in all states where action am is taken. That is a mouthful, so in other

words: let A∗ = {am|m ∈ Mσ}; for each am ∈ A∗, we must have uS (am, ω) ≥ uS (am′ , ω) for all

am′ ∈ A∗ and all ω ∈ Ωm. Why does this hold? If it were not the case, Sender could attain a higher

payoff with an alternative strategy. Suppose uS (am, ω) < uS (am′ , ω) for some am′ ∈ A∗, ω ∈ Ωm.

Sender could send m′ in ω with a small probability and still keep am optimal given m. Finally,

the fact that uS (am, ω) ≥ uS (am′ , ω) for all am′ ∈ A∗ and all ω ∈ Ωm implies that strategy under

consideration also constitutes a cheap-talk equilibrium.13 Hence, commitment is not valuable.

As the intuition above suggests, Theorem 1 can easily be extended to establish a threefold

equivalence. Generically, the following imply each other: (i) commitment is valuable, (ii) committed

Sender values randomization, and (iii) any optimal persuasion profile induces a belief under which

Receiver has multiple optimal actions (see Theorem 1′ in the Appendix).

We postpone the discussion of the converse direction until the next section, as the intuition for

it is related to the intuition for Theorem 2. Formal proofs are in the Appendix.

4 Value of commitment: willingness-to-pay

In this section, we consider a Sender without commitment power who engages in a cheap-talk game.

We ask whether he would be strictly better off if he had commitment power. We link the value of

13Deviating to an on-path message m ∈ M∗ obviously cannot be profitable; for any off-path message m ̸= M∗, we
can just set σR(·|m) = σR (·|m∗) for some m∗ ∈ M∗, thus ensuring that this deviation is also not profitable.
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such commitment to Sender’s behavior in Sender-preferred cheap-talk equilibria, in particular to

whether Sender necessarily randomizes in such equilibria.

Theorem 2. Generically, commitment is valuable if cheap-talk Sender values randomization.

Theorem 2 and the if-direction of Theorem 1 both derive from the following result. Generically,

if a cheap-talk equilibrium yields the persuasion payoff, then there is a partitional σ and a (pure

strategy) ρ such that (σ, ρ) is a cheap-talk equilibrium and yields the persuasion payoff. We build

this result (Lemma 4 in the Appendix) in two steps.

The first step (Lemma 5 in the Appendix) shows that, generically, if (σ, ρ) is R-BR and yields

the persuasion payoff, then ρ must be a pure strategy on-path. Consider toward contradiction that

there is an m sent with positive probability under σ, and there are two distinct actions, say a and a′,

in the support of ρ (·|m). It must be that both Sender and Receiver are indifferent between a and a′

under belief µm: Receiver has to be indifferent because (σ, ρ) is R-BR; Sender has to be indifferent

because (σ, ρ) yields the persuasion payoff, which maximizes US over all persuasion profiles.14 The

result then follows from establishing that such a coincidence of indifferences generically cannot arise

when Sender is optimizing. For some intuition for why this is the case, consider Figure 1 which

illustrates this result when there are three states. Suppose a1 and a2 are in the support of ρ (·|m).

Region Ri denotes beliefs where Receiver prefers ai. Region Si denotes beliefs where Sender prefers

ai. Generically, the border between R1 and R2 is distinct from the border between S1 and S2 and

thus the two borders have at most one intersection, µm. Moreover, generically µm (if it exists) is

an interior belief. But now, Sender could deviate to an alternate strategy that induces beliefs µ1

and µ2 instead of µm, with Receiver still indifferent between a1 and a2 at both µ1 and µ2. Suppose

that Receiver takes action ai following belief µi. This strategy is still R-BR for Receiver and gives

Sender a strictly higher payoff. Thus, we have reached a contradiction. With more than three

states and more than two actions, the proof that the coincidence of indifferences generically cannot

arise is conceptually similar but notationally more involved. It is presented in the Appendix as

Lemma 2.

The second step (Lemma 6 in the Appendix) shows that, generically, if (σ, ρ) is a cheap-talk

14If Sender strictly prefers one action over the other, say a over a′, at µm, then Sender would obtain a higher payoff
if Receiver always takes a following m (which would remain R-BR given Receiver’s indifference).
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Figure 1: Indifference incompatible with optimality

equilibrium that yields the persuasion payoff, and ρ is a pure strategy on-path, then there is a

partitional cheap-talk equilibrium that yields the persuasion payoff. This is easy to see. Generically,

for any ω and any a ̸= a′, we have uS (a, ω) ̸= uS (a′, ω). Now, consider some cheap-talk equilibrium

(σ, ρ) that yields the persuasion payoff with ρ is a pure strategy on-path. If σ is partitional, our

result is immediate. Suppose to the contrary that in some ω, both m and m′ are sent with positive

probability. Then, m and m′ must induce the same action: if m induces some a and m′ induces a

distinct a′, the fact that uS (a, ω) ̸= uS (a′, ω) would mean that σ cannot be S-BR. Given that any

two messages sent in ω induce the same action, we can define ρ (σ (ω)) as the action that Receiver

takes in state ω given (σ, ρ).

Now, we can consider an alternative, partitional profile (σ̂, ρ̂). Let f be any injective function

from A to M . Let σ̂ (ω) = f (ρ (σ (ω))) and ρ (f (a)) = a. It is immediate that (σ̂S , σ̂R) is also a

cheap-talk equilibrium and yields the persuasion payoff.

It is perhaps worth noting that 1 and 2 jointly imply the following:

Corollary 1. If cheap-talk Sender values randomization, then committed Sender values randomiza-

tion.
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5 How often is commitment valuable?

Theorems 1 and 2 would not be particularly interesting if it turned out that both commitment and

randomization are almost always valuable.

When uS = uR or uS = −uR, it is easy to see that neither commitment nor randomization are

valuable, but those are knife-edge cases and it is important to show that commitment has no value

in a broader class of environments. We do so in this section.

To formalize our result, we fix an arbitrary prior µ0 and generate random environments by

drawing Sender’s utility for each action-state i.i.d. from some atomless distribution F and Receiver’s

utility for each action-state i.i.d from some atomless distribution G. We further assume that for

each (a, ω), the random variables uS (a, ω) and uR (a, ω) are independent from one another.

We should note that this structure does not preclude any particular configuration of preferences.

For any F and G, with some probability the environment will be such that Sender’s and Receiver’s

preferences are perfectly aligned, with some probability they will be completely opposed, with some

probability they will be aligned in some states but not others, etc.

Fixing A and Ω, we thus generate stochastic environments and can ask: what is the probability

that commitment (or equivalently randomization) has no value. Our main theorem in this section

establishes results about Pr (commitment has no value) that turn out to be independent of F , G,

and µ0.

Theorem 3. For any interior µ0 and any atomless F and G:

� Pr (commitment has no value) ≥ 1

|A||A| .

� as |Ω| → ∞, Pr (commitment has no value) → 1

|A||A| .

Denote the action space by A =
{
a1, a2, ..., a|A|

}
and denote |A| elements of M by m1 through

m|A|. Let Ωi be the set of states where ai is Sender’s ideal action. The requesting messaging

strategy sets σ (ω) = mi for ω ∈ Ωi.
15 An obliging action strategy sets ρ (mi) = ai. A profile that

consists of the requesting and an obliging strategy yields Sender’s ideal payoff.

15Generically, Ωi and Ωj do not intersect.
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Say that an environment is obedient if for each Ωi and each aj ∈ A, we have

∑
ω∈Ωi

µ0 (ω) (uR (ai, ω)− uR (aj , ω)) ≥ 0. (1)

If the environment is obedient, a profile that consists of the requesting and an obliging strat-

egy clearly constitutes a cheap-talk equilibrium. Since such a profile yields Sender’s ideal payoff,

commitment clearly has no value if the environment is obedient.16

Now, for any Ωi that is not empty, the probability that inequality (1) is satisfied is 1
|A| , since

for each aj , uR (ai, ω) and uR (aj , ω) are i.i.d. with an atomless distribution. Moreover, given

two non-empty Ωi and Ωj , the probability that inequality (1) is satisfied for Ωj is independent of

the probability that it is satisfied for Ωi. Thus if every Ωi is non-empty, the probability that the

environment is obedient (i.e., inequality (1) is satisfied for each of the Ωi sets) is
(

1
|A|

)|A|
, or 1

|A||A| .

If an Ωi is empty, inequality (1) is satisfied vacuously for that Ωi. Thus, for any µ0 and

any atomless F and G the overall probability that the environment is obedient must be weakly

greater than 1

|A||A| . Since commitment has no value in obedient environments, we conclude that

Pr (commitment has no value) ≥ 1

|A||A| .

We establish the second part of the theorem by showing that as |Ω| grows large: (i) the

likelihood that an Ωi is empty converges to zero so Pr (obedience) converges to 1

|A||A| , and (ii)

Pr (commitment has no value) converges to Pr (obedience).

Part (i) is easy to see. For any a ∈ A, as Ω grows large, the chance that there is no state where

a is Sender’s ideal action vanishes.

To establish part (ii), say that an environment is jointly-inclusive if for every action a, there

is some state ω such that a is the ideal action for both Sender and Receiver in ω. Analogously to

part (i), it is easy to see that as Ω grows large, the probability that the environment is jointly-

inclusive converges to 1. To complete the proof, we argue that, generically, if the environment is

jointly-inclusive and commitment has no value, then the environment must be obedient. First, we

16The obedience condition also appears in Antic, Chakraborty, and Harbaugh (2022) and Aybas and Callander
(2024). In Antic, Chakraborty, and Harbaugh (2022), it is a necessary condition for the possibility of subversive
conversations: without it, a third-party (Receiver) with veto power would prevent a committee (Sender) from imple-
menting a project solely based on the information that the committee wants to do so. Aybas and Callander (2024)
consider preferences of the form uR (a, ω (·)) = ω (a)2 and uS (a, ω (·)) = (ω (a)− b)2 for some b > 0 where ω : A → R
is the realized path of a Brownian motion. They identify features of b and A that make the environment obedient.
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know from Theorem 2, that there is a partitional profile (σ, ρ) that is a cheap-talk equilibrium and

yields the persuasion payoff. Next, we note that every action a ∈ A must be induced by (σ, ρ):

there is a state ω where a is both Sender’s and Receiver’s ideal action, so if a were never taken, the

committed Sender could profitably deviate by sometimes17 revealing ω and thus inducing a, thus

contradicting the fact that (σ, ρ) yields the persuasion payoff. This in turn implies that, for every

ω, the action induced in ω, ρ (σ (ω)), must be Sender’s ideal action in ω. If Sender strictly preferred

some other a′ in ω, (σ, ρ) could not be S-BR as the cheap-talk Sender would profitably deviate and

set σ(ω) to be whatever message induces a′; since all actions are induced by (σ, ρ), there must be

such a message. Taking stock, we have established that (σ, ρ) is a partitional profile that is R-BR

(since it is a cheap-talk equilibrium) and induces Receiver to take Sender’s ideal action in every

state. But this means that every message sent under σ fully reveals what action is ideal for Sender,

and Receiver obliges and takes that action. Hence, the environment is obedient.

We conclude this section with a few comments.

First, as the argument above makes clear, when the state space is large, Sender does not value

commitment only if he can obtain his ideal payoff in a cheap-talk equilibrium.18 With a smaller

state space, however, cheap-talk and persuasion payoffs can coincide even if they are substantially

lower than the ideal payoff.

Second, the assumption that Sender’s and Receiver’s utility are drawn from distributions that

are i.i.d. across action-state pairs is more palatable if we think of A and Ω as being not merely finite

but also “unstructured,” without a natural metric. For example, if A includes actions such as “buy

one apple” and “buy two apples”, or Ω includes states such as “temperature will be 88 Fahrenheit”

and “temperature will be 89 Fahrenheit,” then assuming that uS (a, ω) is independent of uS (a′, ω′)

as soon as a ̸= a′ or ω ̸= ω′ would be unreasonable.

Third, in the second part of Theorem 3, a reader might be concerned that, by keeping F and G

fixed as Ω grows, we are “squishing” utilities together and making the difference in payoffs become

vanishingly small. We could let F and G depend on |A| and |Ω| in an arbitrary way, however, and

the Theorem would still hold. We formulate the Theorem with a fixed F and G solely for ease of

17Sender could reveal ω with some probability ϵ; Receiver’s response to all other messages would remain unchanged
if ϵ is sufficiently small.

18Formally, as |Ω| goes to infinity, the probability of an environment such that Sender does not value commitment
even though he does not obtain his ideal payoff converges to zero.
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exposition.

Fourth, the obedience condition seems to have some flavor of alignment of Sender and Receiver’s

preferences. While that may the case, the obedience condition does not preclude the possibility

that Receiver is much worse off than she would be if Sender and Receiver’s preferences were fully

aligned. For instance, consider the prosecutor-judge example and suppose that the prior is 0.7

rather than 0.3; then, the environment is obedient but Receiver obtains no information.

6 Conclusion

Our analysis suggests some potential directions for future research.

We establish that, generically, commitment has zero value if and only if randomization has zero

value for a committed Sender. A natural question would be whether a small (or large) value of

commitment implies or is implied by a small (or large) value of randomization.

Throughout, we focus on how Sender’s commitment impacts Sender ’s payoff. One could also

explore the impact of Sender’s commitment on Receiver’s payoff.
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A Appendix

A.1 Notation and terminology

Let A =
{
a1, ..., a|A|

}
. Let Ω =

{
ω1, ..., ω|Ω|

}
.

Given a messaging strategy σ, letMσ = {m ∈ M |σ(m|ω) > 0 for some ω} be the set of messages

that are sent with positive probability under σ. For any ω, if σ(·|ω) is degenerate (i.e., there exists

a message m such that σ(m|ω) = 1), we abuse notation and let σ(ω) denote the message that is

sent in state ω. Similarly, if ρ(·|m) is degenerate, we let ρ (m) denote the action taken following

message m.

We say that ρ is pure if ρ(·|m) is degenerate for all m ∈ M . Given a profile (σ, ρ), we say ρ is

pure-on-path if ρ (·|m) is degenerate for all m ∈ Mσ.

We denote a vector all of whose elements are equal to r by r. We sometimes use µ and sometimes

use [µ] for an element of ∆Ω.

A.2 Generic environments for the proofs

We now introduce two generic sets of environments that will play important roles in the proofs.

A.2.1 Partitional-unique-response environments

An environment (uS , uR, µ0) satisfies partitional-unique-response if for every non-empty Ω̂ ⊆ Ω,

argmax
a∈A

∑
ω∈Ω̂

µ0(ω)uR(a, ω)

is a singleton.

Note that whether an environment satisfies partitional-unique-response does not depend on

Sender’s preferences. The partitional-unique-response property requires that, at the finitely many

beliefs induced by partitional experiments, Receiver has a unique best response at those beliefs.

Lemma 1. The set of partitional-unique-response environments is generic.

Proof. Given a triplet
(
Ω̂, ai, aj

)
such that Ω̂ ⊆ Ω, ai, aj ∈ A, and ai ̸= aj , let Q(Ω̂, ai, aj) denote
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the set of (uR, µ0) such that

∑
ω∈Ω̂

u0(ω)uR(ai, ω) =
∑
ω∈Ω̂

u0(ω)uR(aj , ω). (2)

An environment (uS , uR, µ0) does not satisfy partitional-unique-response only if (uR, µ0) ∈

∪ai ̸=aj ,Ω̂⊆ΩQ(Ω̂, ai, aj).

We wish to show that ∪ai ̸=aj ,Ω̂⊆ΩQ(Ω̂, ai, aj) has measure zero in R|Ω|×|A| ×∆Ω, which implies

that the set of partitional-unique-response environments is generic.

Fix any ai ̸= aj and Ω̂ ⊆ Ω. For any µ0 ∈ ∆Ω, the set of uR that satisfy (2) can be written as:

∑
ω,a

uR(a, ω)η(a, ω) = 0 (3)

where

η(a, ω) =



µ0(ω) if a = ai, ω ∈ Ω̂

−µ0(ω) if a = aj , ω ∈ Ω̂

0 otherwise.

So (3) defines a hyperplane of R|Ω|×|A|, and thus has Lebesgue measure zero in R|Ω|×|A|.

Thus, by Fubini’s Theorem, the set of pairs (uR, µ0) that satisfy (2) has Lebesgue measure

zero in R|Ω|×|A| × ∆Ω. Finally, since there is finite number of possible ai, aj , and Ω̂, the set

∪ai ̸=aj ,Ω̂⊆ΩQ(Ω̂, ai, aj) also has Lebesgue measure zero in R|Ω|×|A| ×∆Ω

A.2.2 Scant-indifferences environments

For each ai ∈ A, let uS(ai) = uS(ai, ·) ∈ R|Ω| and uR(ai) = uR(ai, ·) ∈ R|Ω| denote the payoff

vectors across the states.

For each ai, define the expanded-indifference matrix T i as follows. Let T i
S be the matrix with

|A| − 1 rows and |Ω| columns, with each row associated with j ̸= i and equal to uS(aj) − uS(ai).

Let T i
R be the matrix with |A| − 1 rows and |Ω| columns, with each row associated with j ̸= i and
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equal to uR(aj)− uR(ai). Let I be the identity matrix of size |Ω|. Then, let

T i =


T i
S

T i
R

I

 .

Given any matrix T , a row-submatrix of T is a matrix formed by removing some of the rows of

T .

Finally, we say that an environment satisfies scant-indifferences if every row-submatrix of every

expanded-indifference matrix T i is full rank.

We anticipate that the reader might find this definition mysterious, so we now try to provide

some intuition by connecting this definition to the proof sketch we gave in the body of the paper

for Theorem 2 in the case with two actions and three states.

Recall, that in Figure 1, the argument behind Lemma 5 relied on two facts that must hold

generically. First, the border between R1 and R2 is distinct from the border between S1 and S2

and thus the two borders have at most one intersection, µm. Second, generically µm (if it exists) is

an interior belief. Moreover, the argument behind Lemma 6 relied on the fact that, generically, for

any ω and ai ̸= aj , uS(ai, ω) ̸= uS(aj , ω).

We now illustrate why these three facts hold in any scant-indifferences environment. With only

two actions, we can look at T 1 only, since the argument for T 2 is identical. We have

T 1 =



∆
uS (ω1)

∆
uS (ω2)

∆
uS (ω3)

∆
uR (ω1)

∆
uR (ω2)

∆
uR (ω3)

1 0 0

0 1 0

0 0 1



where
∆
uS (ω1) = uS (a2, ω1)− uS (a1, ω1) and analogously for other states and

∆
uR.
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First, consider the row-submatrix

∆
T =

∆
uS (ω1)

∆
uS (ω2)

∆
uS (ω3)

∆
uR (ω1)

∆
uR (ω2)

∆
uR (ω3)

 .

Note that both Sender and Receiver are indifferent between the two actions at a belief µ if and only

if
∆
Tµ = 0. Thus, requiring that

∆
T be full-rank is equivalent to requiring that the border between

R1 and R2 not be parallel to the border between S1 and S2. A fortiori, the environment satisfying

scant-indifferences implies that the two borders do not coincide.

Second, consider the row-submatrix


∆
uS (ω1)

∆
uS (ω2)

∆
uS (ω3)

∆
uR (ω1)

∆
uR (ω2)

∆
uR (ω3)

1 0 0

 .

Requiring that this matrix be full-rank yields that µm puts strictly positive probability on ω1.

Considering the row-submatrices that alternatively include the other two rows of the identity matrix

yields that µm puts strictly positive probability on ω2 and ω3.

Finally, suppose that in, say state ω1,
∆
uS (ω1) = 0. Consider the row-submatrix


0

∆
uS (ω2)

∆
uS (ω3)

0 1 0

0 0 1

 .

Clearly, this matrix is not full-rank, so scant-indifferences rules out the possibility that uS(a1, ω1) =

uS(a2, ω2).

Having motivated the definition of scant-indifferences environments (and given some intuition

for why our results hold in such environments), we now establish that the set of such environments

is generic.

Lemma 2. The set of scant-indifferences environments is generic.

Proof. Whether an environment satisfies scant-indifferences does not depend on µ0. Accordingly, we
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seek to show that the set of (uS , uR) such that every row-submatrix of every expanded-indifference

matrix is full-rank has full Lebesgue measure on R|Ω|×|A|×2.

First, observe that given any expanded-indifference matrix T i, if every square row-submatrix

of T i is full-rank, than every row-submatrix of T i is full-rank. To see why, suppose every square

row-submatrix of T i is full-rank. Now, consider an arbitrary row-submatrix T̂ of T i. If T̂ square,

it obviously has full-rank. Suppose that T̂ has more than |Ω| rows. In that case, every square row-

submatrix of T̂ is also a square row-submatrix of T i. This row-submatrix has rank |Ω|. Therefore,

T̂ has rank |Ω| and is thus full-rank. Finally, suppose hat T̂ has fewer than |Ω| rows. We know

that T̂ is a row-submatrix of some square row-submatrix T̃ of T i. We know T̃ has full-rank so all

of its rows are linearly independent. Consequently, the subset of its rows that constitute T̂ is also

linearly independent.

Now that we can consider only square row-submatrices of T i, we recall that a square matrix

is full-rank if and only if its determinant is non-zero. Hence, it will suffice to show that for a

full Lebesgue measure set of (uS , uR), the determinant of every square row-submatrix of every

expanded-indifference matrix is non-zero. Given (uS , uR), consider some square row-submatrix T̂

of some expanded-indifference matrix. The determinant of T̂ is a non-zero polynomial function of

(uS , uR) ∈ R|Ω|×|A|×2. The zero set of any non-zero polynomial function has Lebesgue measure

zero, so the set of (uS , uR) for which T̂ does not have full rank has Lebesgue measure zero. Since

there are only finitely many square row-submatrices of expanded-indifference matrices, the fact that

any one of them is generically full-rank implies that all of them are generically full-rank (a union

of finitely many sets of Lebesgue measure zero has Lebesgue measure zero).

As we noted above (for the three state, two action case), in scant-indifferences environments,

there is no state in which Sender is indifferent between two distinct actions.

Lemma 3. In any scant-indifferences environment, for any ω and ai ̸= aj, uS(ai, ω) ̸= uS(aj , ω).

Proof. Suppose, toward a contradiction, that there exist some ω, ai, and aj such that uS(ai, ω) =

uS(aj , ω). Without loss, suppose this holds for ω1. Then, the vector uS(ai) − uS(aj) has zero as
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its first element. Now consider the |Ω| × |Ω| row sub-matrix of T j



uS(ai)− uS(aj)

e2

...

e|Ω|


.

This matrix is not full-rank because the first row can be expressed as a linear combination of the

other rows.

A.3 Key Lemma

In this section we establish a key lemma that implies both the if-part of Theorem 1 and Theorem

2.

Lemma 4. In a scant-indifferences environment, if commitment has no value, then there is a parti-

tional σ̂ and a pure strategy ρ̂ such that (σ̂, ρ̂) is a cheap-talk equilibrium and yields the persuasion

payoff (and |Mσ̂| ≤ |A|).

Lemma 4 will be useful for proofs of Theorems 1, 2, and 3. The parenthetical remark that

|Mσ̂| ≤ |A| will be useful in the proof of Theorem 3.

To establish the Lemma, we first show that if a cheap-talk equilibrium yields the persuasion

payoff, then Receiver must not randomize on path in that equilibrium. Second, we show that if

Receiver does not randomize on path, Sender also need not randomize.

Lemma 5. In a scant-indifferences environment, if (σ, ρ) is R-BR and yields the persuasion payoff,

then ρ must pure-on-path.

Proof. Suppose by contradiction that the environment satisfies scant-indifferences, profile (σ, ρ) is

R-BR and yields the persuasion payoff, yet there exists a messagem ∈ Mσ such that |supp(ρ(·|m))| =

k > 1.

We first note that both Sender and Receiver must be indifferent among all the actions in
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supp(ρ(·|m)) given µm, the belief induced by messagem. In other words, for all ai, aj ∈ supp(ρ(·|m)),

∑
ω

µm(ω)uR(ai, ω) =
∑
ω

µm(ω)uR(aj , ω), (4)

∑
ω

µm(ω)uS(ai, ω) =
∑
ω

µm(ω)uS(aj , ω). (5)

Equation (4) follows immediately from R-BR. Equation (5) follows from the fact that (σ, ρ) yields

the persuasion payoff: if say
∑

ω µm(ω)uS(ai, ω) >
∑

ω µm(ω)uS(aj , ω), an alternative strategy

profile where Receiver breaks ties in favor of Sender would still satisfy R-BR while strictly improving

Sender’s payoff.

For each belief µ ∈ ∆Ω, let A∗
R(µ) denote the set of Receiver’s optimal actions under belief µ;

that is, A∗
R(µ) = argmaxa∈A uR(a) · µ. Clearly, supp(ρ(·|m)) ⊆ A∗

R(µm), meaning that A∗
R(µm)

contains at least the k actions in the support of ρ(·|m), but may also contain additional optimal

actions that are not played following m. Without loss of generality, let supp(ρ(·|m)) = {a1, ..., ak}

and A∗
R(µ) = {a1, ..., ak, ak+1, ..., ak+r} for some r ≥ 0. Note that for any i = 2, ..., k + r, uR(a1) ·

µm = uR(ai) · µm.

In addition, Equation (5) implies that for any i = 2, ..., k, uS(a1) ·µm = uS(ai) ·µm. Combining

both Sender’s and Receiver’s indifference conditions, we have



uS(a2)− uS(a1)

...

uS(ak)− uS(a1)

uR(a2)− uR(a1)

...

uR(ak+r)− uR(a1)



µm = 0. (6)

Let Ω̂ = {ω|µm(ω) = 0}, the (potentially empty) set of states that are not in the support of
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µm. Without loss, suppose that Ω̂ = {ω1, ...ωl} where ℓ ≥ 0. If ℓ > 0 (i.e., Ω̂ ̸= ∅), then we have


e1

...

eℓ

µm = 0. (7)

Let T̂S =


uS(a2)− uS(a1)

...

uS(ak)− uS(a1)

, T̂R =


uR(a2)− uR(a1)

...

uR(ak+r)− uR(a1)

, Ê =


e1

...

eℓ

, and T̂ =


T̂S

T̂R

Ê

. Note

that T̂ is a row-submatrix of the expanded-indifference matrix T 1.

Combining (6) and (7), we know T̂ µm = 0. Moreover, since µm ∈ ∆Ω, we know 1µm = 1.

Next we make two observations: (i) rank(T̂ ) < |Ω|, otherwise the unique solution to T̂ µ = 0 is

µ = 0. Since we are in a scant-indifferences environment, this means that T̂ has full row rank; (ii)

vector 1 can not be represented as a linear combination of rows of T̂ . To see why, assume toward

contradiction that there exists a row vector λ ∈ R2k+r+ℓ−2 such that λT̂ = 1. This would lead to

a contradiction that 1 = 1µm = λT̂µm = λ0 = 0.

Observations (i) and (ii) together imply that the matrix

T̂
1

 has full row rank. Consequently,

we know rank


 T̂

1


 > rank



T̂R

Ê

1


 .

Now, we claim that there exists x ∈ Rn such that


T̂R

Ê

1

x = 0 (8)

and

T̂S x ̸= 0. (9)

To see this, suppose by contradiction that for any x that solves (8), we have T̂S x = 0. This would
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imply that the set of solutions to (8) and the set of solutions to

T̂
1

x = 0 (10)

coincide. By the Rank-Nullity Theorem, however, the subspace defined by (10) has dimension

|Ω|−rank


T̂
1


, while the subspace defined by (8) has a higher dimension |Ω|−rank



T̂R

Ê

1


.

Consider two vectors, [µm + εx] and [µm − εx], where ε ∈ R>0. First we verify that for suf-

ficiently small ε, [µm ± εx] ∈ ∆Ω. Since 1x = 0, it follows that 1 [µm ± εx] = 1 [µm] = 1. For

ωj /∈ Ω̂, we have [µm]j > 0, so for small enough ε, [µm ± εx]j ≥ 0. For ωj ∈ Ω̂, we know ej is a row

of Ê, so ejx = 0. Consequently, [µm ± εx]j = ej [µm ± εx] = [µm]j = 0. Thus, [µm ± εx] ∈ ∆Ω.

Observe that A∗
R(µm) = A∗

R(µm ± εx). First, for any a /∈ A∗
R(µm), if ε is sufficiently small,

a /∈ A∗
R(µm±εx). Therefore, A∗

R(µm±εx) ⊆ A∗
R(µm). But, T̂R x = 0 implies that [µm ± εx] ·uR(a)

is constant across a ∈ A∗
R(µm), so A∗

R(µm ± εx) = A∗
R(µm).

Consider an alternative messaging strategy σ̂ that is identical to σ, except that the message

m is split into two new messages, m+ and m−, which induce the beliefs µm + εx and µm − εx,

respectively.19 We consider ρ̂ that agrees with ρ on messages other than {m,m+,m−} and leads

Receiver to break indifferences in Sender’s favor following m+ and m−. We will show that (σ̂, ρ̂)

yields a strictly higher payoff to Sender, thus contradicting the assumption that (σ, ρ) yields the

persuasion payoff.

Since T̂S x ̸= 0, we know there is an ai ∈ {a2, ..., ak} such that x · [uS(ai)− uS(a1)] ̸= 0.

Because a1 ∈ A∗
R(µm ± εx) = A∗

R(µm), we have

max
a∈A∗(µm)

[µm + εx] · [uS(a)− uS(a1)] ≥ 0

and

max
a∈A∗(µm)

[µm − εx] · [uS(a)− uS(a1)] ≥ 0.

19It is possible for Mσ = M , but we can consider an alternative strategy that induces the same outcome as σ and
uses only |A| messages. We can also let m play the role of m+ or m−, so our assumption that |M | ≥ |A|+ 1 suffices.
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We now establish that at least one of these inequalities has to be strict. Suppose toward contra-

diction that both hold with equality. The first equality implies [µm + εx] · [uS(ai) − uS(a1)] ≤ 0,

which combined with the fact that µm ·uS(ai) = µm ·uS(a1) implies that x · [uS(ai)−uS(a1)] ≤ 0.

Similarly, the second equality implies that −x · [uS(ai) − uS(a1)] ≤ 0. Together, this yields that

x · [uS(ai)− uS(a1)] = 0, a contradiction. Hence, one of the inequalities has to be strict.

Consequently, Sender’s interim payoff under σ̂ (in the event that m is sent under σ) is

1

2
max

a∈A∗(µm)
[µm + εx] · uS(a) +

1

2
max

a∈A∗(µm)
[µm − εx] · uS(a)

>
1

2
[µm + εx] · uS(a1) +

1

2
[µm − εx] · uS(a1)

=µm · uS(a1)

Thus, (σ̂, ρ̂) yields a strictly higher payoff to Sender, contradicting the assumption that (σ, ρ) yields

the persuasion payoff.

Lemma 6. In a scant-indifferences environment, if a cheap-talk equilibrium (σ, ρ) yields the persua-

sion payoff and ρ is pure-on-path, then there exists a partitional σ̂ and a pure strategy ρ̂ such that

|Mσ̂| ≤ |A| and (σ̂, ρ̂) is a cheap-talk equilibrium and yields the persuasion payoff.

Proof. Suppose a cheap-talk equilibrium (σ, ρ) yields the persuasion payoff and ρ is pure-on-path.

First, we show that for any ω and any m,m′ such that σ(m|ω), σ(m′|ω) > 0, ρ(m) = ρ(m′).

The fact that both m and m′ are sent in ω implies that uS(ρ(m), ω) = uS(ρ(m
′), ω). Moreover,

by Lemma 3, there exist no distinct a and a′ such that uS(a, ω) = uS(a
′, ω), so it must be that

ρ(m) = ρ(m′).

Let A∗ = {a ∈ A|a = ρ(m) for some m ∈ Mσ} be the set of actions that are taken on-path.

Without loss, let A∗ = {a1, ..., ak}. For each ai, let Mi = {m ∈ Mσ|ρ(m) = ai} be the set of

on-path messages that induce action ai, and Ωi = {ω ∈ Ω|supp(σ(·|ω)) ⊆ Mi} be the set of states

that induce action ai. Note that {Mi}ki=1 is a partition of Mσ. Moreover, it is easy to see that

{Ωi}ki=1 is a partition of Ω. First, Ωi cannot be empty because every ai ∈ A∗ is taken on-path.

Second, every ω ∈ Ω belongs to some Ωi as only actions in A∗ are taken on-path; hence, ∪iΩi = Ω.

Finally, the fact that for any ω and any m,m′ such that σ(m|ω), σ(m′|ω) > 0 we have ρ(m) = ρ(m′)
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implies that if i ̸= j, Ωi and Ωj are disjoint. To see why, suppose toward contradiction that some

ω ∈ Ωi ∩ Ωj . The fact that ω ∈ Ωi implies there is a message m ∈ Mi such that σ (m|ω) > 0. The

fact that ω ∈ Ωj implies there is a message m′ ∈ Mj such that σ (m′|ω) > 0. But this cannot be

since ρ (m) = ai ̸= aj = ρ (m′).

Now select one message in each Mi, and label it as mi.

Next, consider the following alternative strategy profile (σ̂, ρ̂):

� σ̂(mi|ω) = 1 if ω ∈ Ωi.

� ρ̂(mi) = ai.

� ρ̂(m) = a1 if m ∈ M\{m1, ....mk}.

Note that σ̂ is well defined because {Ωi}ki=1 is a partition of Ω. By construction, σ̂ is partitional,

|Mσ̂| ≤ |A| , and ρ̂ is a pure strategy. Moreover, under both (σ, ρ) and (σ̂, ρ̂), every state in Ωi

induces action ai with probability 1. Thus, the two strategy profiles induce the same distribution

over states and actions, so (σ̂, ρ̂) also yields the persuasion payoff. It remains to show that (σ̂, ρ̂) is

a cheap-talk equilibrium.

Note that S-BR of (σ, ρ) implies that for any ω and m ∈ supp(σ(·|ω)), we have

uS(ρ(m), ω) ≥ uS(ρ(m
′), ω) for all m′ ∈ Mσ.

Therefore, for any ω ∈ Ωi, uS(ai, ω) ≥ uS(aj , ω) for all aj ∈ A∗. This implies that uS(ρ̂(σ̂(ω)), ω) ≥

uS(ρ̂(m
′), ω) for all m′ ∈ M . Hence, (σ̂, ρ̂) satisfies S-BR.

Fact (σ, ρ) is R-BR requires that for all m ∈ Mσ,

∑
ω∈Ω

µ0(ω)σ(m|ω)uR(ρ(m), ω) ≥
∑
ω∈Ω

µ0(ω)σ(m|ω)uR(a′, ω) for all a′ ∈ A.

For any i ∈ {1, ..., k}, we sum the inequality above over all m ∈ Mi. Since for m ∈ Mi we have

ρ (m) = ai, this yields

∑
ω∈Ω

µ0(ω)
∑

m∈Mi

σ(m|ω)uR(ai, ω) ≥
∑
ω∈Ω

µ0(ω)
∑

m∈Mi

σ(m|ω)uR(a′, ω) for all a′ ∈ A.

28



Since for any m ∈ Mi and ω ∈ Ωi, we have σ(m|ω) = 0, the inequality above implies

∑
ω∈Ωi

µ0(ω)
∑

m∈Mi

σ(m|ω)uR(ai, ω) ≥
∑
ω∈Ωi

µ0(ω)
∑

m∈Mi

σ(m|ω)uR(a′, ω) for all a′ ∈ A.

Since
∑

m∈Mi
σ(m|ω) = 1 if ω ∈ Ωi, we have

∑
ω∈Ωi

µ0(ω)uR(ai, ω) ≥
∑
ω∈Ωi

µ0(ω)uR(a
′, ω) for all a′ ∈ A. (11)

To establish (σ̂, ρ̂) is R-BR, we need to show that for any mi ∈ Mσ̂, we have

∑
ω∈Ω

µ0(ω)σ̂ (mi|ω)
∑
a∈A

ρ̂ (a|mi)uR(a, ω) ≥
∑
ω∈Ω

µ0(ω)σ̂ (mi|ω)uR(a′, ω) for all a′ ∈ A.

But, by definition of (σ̂, ρ̂), we know that σ̂ (mi|ω) = 0 for ω /∈ Ωi and that ρ̂ (ai|mi) = 1. Hence,

the inequality above is equivalent to Equation (11).

A.4 Proof of Theorem 1

We present and prove a result that generalizes Theorem 1 into a threefold equivalence.

Theorem 1′. Generically, the following statements are equivalent:

1. Commitment is valuable.

2. Committed Sender values randomization.

3. For any optimal persuasion profile (σ, ρ), there exists m ∈ Mσ such that

| argmax
a∈A

∑
ω

µm(ω)uR(a, ω)| ≥ 2,

where µm is defined as µm(ω) = µ0(ω)σ(m|ω)∑
ω µ0(ω)σ(m|ω) .

Proof. We establish the equivalence for any environment that satisfies both partitional-unique-

response and scant-indifferences. Since the set of partitional-unique-response environments is

generic (Lemma 1) and the set of scant-indifferences environments is generic (Lemma 2), the set of

environments that satisfy both properties is also generic.
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We will establish that (2) implies (1), then that (1) implies (3), and finally that (3) implies (2).

Since we are in a scant-indifferences environment, (2) implies (1) by Lemma 4.

Next we wish to show that (1) implies (3). We do so by establishing the contrapositive.

Suppose that there exists an optimal persuasion profile (σ, ρ) such that for every m ∈ Mσ,

argmaxa∈A
∑

ω µm(ω)uR(a, ω) is unique. This implies that ρ must be pure-on-path. We will

construct an optimal persuasion profile (σ, ρ̂) that it is a cheap-talk equilibrium. Consider the

following ρ̂: for all m ∈ Mσ, let ρ̂(m) = ρ(m); for m /∈ Mσ, let ρ̂(m) = ρ(m0) for some m0 ∈ Mσ.

Since ρ̂ and ρ coincide on path, (σ, ρ) and (σ, ρ̂) yield the same payoffs to both Sender and Receiver.

Therefore, (σ, ρ̂) satisfies R-BR and yields the persuasion payoff. It remains to show that (σ, ρ̂) is

S-BR, which is equivalent to Sender’s interim optimality: for each ω,

∑
m

σ(m|ω)uS(ρ̂(m), ω) ≥ uS(ρ̂(m
′), ω) (12)

for all m′ ∈ M . First, note that it suffices to show that Equation (12) holds for m′ ∈ Mσ. Once we

establish that, we know
∑

m σ(m|ω)uS(ρ̂(m), ω) ≥ uS(ρ̂(m0), ω) since m0 ∈ Mσ. Therefore, since

ρ̂(m′) = ρ(m0) = ρ̂(m0) for m
′ /∈ Mσ, Equation (12) holds for m′ /∈ Mσ.

Now, suppose toward contradiction that there exist ω̂ and m̂ ∈ Mσ such that
∑

m σ(m|ω̂)uS(ρ̂(m), ω̂) <

uS(ρ̂(m̂), ω̂). Consider an alternative messaging strategy σ̂: σ̂(ω) = σ(ω) for ω ̸= ω̂ while σ̂ (ω̂)

sends the same distribution of messages as σ (ω̂) with probability 1−ε and otherwise sends message

m̂. Formally, σ̂ (m|ω̂) =


(1− ε)σ (m|ω̂) if m ̸= m̂

(1− ε)σ (m|ω̂) + ε if m = m̂

.

Fix anym ∈ Mσ. SinceA is finite, the fact that ρ̂(m) = ρ (m) is the unique argmaxa∈A
∑

ω µm(ω)uR(a, ω)

implies that ρ̂(m) remains the best response for a neighborhood of beliefs around µm. Therefore,

for sufficiently small ε, (σ̂, ρ̂) is R-BR. Hence, (σ̂, ρ̂) is a persuasion profile and yields the payoff

US(σ̂, ρ̂) = US(σ, ρ̂) + ε[uS(ρ̂(m̂), ω̂)−
∑
m

σ(m|ω̂)uS(ρ̂(m), ω̂)]

> US(σ, ρ̂).

This contradicts the fact that (σ, ρ̂) yields the persuasion payoff.
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Finally, since we are considering a partitional-unique-response environment, the fact that (3)

implies (2) is immediate.

A.5 Proof of Theorem 2

Lemmas 2 and 4 jointly imply Theorem 2.

A.6 Proof of Theorem 3

Recall that we consider a setting where for each (a, ω), uS(a, ω) is drawn from F and uR(a, ω)

is drawn from G. Both F and G are atomless, and all variables {uS(a, ω), uR(a, ω)}(a,ω)∈A×Ω are

mutually independent. Throughout this section, we fix some atomless F and G and some interior

prior µ0. When we say that the probability of some property is q, we mean that when uS ∼ F and

uR ∼ G, the likelihood that (uS , uR, µ0) satisfies that property is q. We use the word event to refer

to a set of environments.

Given uS , let ΩuS
i = {ω ∈ Ω|ai ∈ argmaxa∈A uS(a, ω)} denote the set of states where ai is an

ideal action for Sender.20 Note that each ω must belong to at least one ΩuS
i , but the same ω may

appear in multiple ΩuS
i . Say that uS is regular if ΩuS

i ∩ΩuS
j = ∅ for i ̸= j. Lemmas 2 and 3 jointly

imply that the set of uS that are regular has full Lebesgue measure in R|A| |Ω|. Since F is atomless,

this in turn implies that uS is regular with probability one.

Recall that an environment is obedient if for each non-empty ΩuS
i ,

ai ∈ argmax
a

∑
ω∈ΩuS

i

µ0(ω)uR(a, ω). (13)

A.6.1 Arbitrary state space

In this section, we establish that for any Ω, Pr (commitment has no value) ≥ 1

|A||A| .

Lemma 7. In any obedient environment, commitment has no value.

Proof. Select |A| elements from M and denote them by m1 through m|A|. Consider a pure strategy

profile (σ, ρ) such that

20In the body of the paper we denoted this set as simply Ωi, but for the formal proofs, it is helpful to keep track
of the fact that this set depends on the randomly drawn uS .
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� σ(ω) = mi implies ω ∈ ΩuS
i ;21

� ρ(m) = ai for m = mi ;

� ρ(m) = a1 for m /∈ {m1, ...,m|A|}.

From (13), this strategy profile satisfies R-BR. In addition, in every state, Sender achieves his

ideal payoff, so S-BR is satisfied and the profile yields the persuasion payoff. Therefore, (σ, ρ) is a

cheap-talk equilibrium that yields the persuasion payoff.

Lemma 8. Pr(obedience) ≥ 1
|A||A| .

Proof. Fix some regular uS . Consider any non-empty ΩuS
i . Given independence and the fact that

each uR(a, ω) is drawn from the atomless G, each a ∈ A has an equal chance, 1/|A|, to maximize∑
ω∈ΩuS

i
µ0(ω)uR(a, ω). In particular,

Pr

(
ai ∈ argmax

a

∑
ω∈ΩuS

i

µ0(ω)uR(a, ω)
∣∣uS) =

1

|A|
.

Moreover, this probability is independent across i. Therefore,

Pr(obedience|uS) =
∏

i:Ω
uS
i is non-empty

(1/|A|) ≥ 1

|A||A| . (14)

This is an inequality because some ΩuS
i could be empty. So, we have established that for any

regular uS , Pr(obedience|uS) ≥ 1
|A||A| . Since uS is regular with probability one, this in turn implies

Pr(obedience) ≥ 1
|A||A| .

Lemmas 7 and 8 jointly imply that Pr (commitment has no value) ≥ 1

|A||A| .

A.6.2 Limit as |Ω| → ∞

In this section, we establish that as |Ω| → ∞, Pr (commitment has no value) → 1

|A||A| .

We first give an outline of the proof. The proof is broken up into two major parts. First,

recall that obedience implies that commitment has no value, but the converse does not hold in

21If uS is not regular, it could be that ω belongs to ΩuS
i and ΩuS

j for distinct i and j. If so, it does not matter
whether σ (ω) is mi or mj . The fact that ∪iΩ

uS
i = Ω, implies there exists a σ such that σ(ω) = mi implies ω ∈ ΩuS

i .
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general. We first show that generically, if the environment is jointly-inclusive,22 then commitment

having no value implies obedience (Lemma 9). We then show, that as |Ω| → ∞, the probability of

joint-inclusivity converges to one (Lemma 10). Combining these two results, we conclude that as

|Ω| → ∞, Pr (commitment has no value) → Pr (obedience).

Second, recall that Pr (obedience) ≥ 1

|A||A| and that the reason this is an inequality is the

possibility that some ΩuS
i might be empty. When no ΩuS

i is empty, it is indeed the case that

Pr (obedience) = 1

|A||A| (Lemma 12). We then show, that as |Ω| → ∞, the probability that some

ΩuS
i is empty converges to zero (Lemma 13). Combining these two results, we conclude that as

|Ω| → ∞, Pr (obedience) → 1

|A||A| .

Lemma 9. If commitment has no value in a jointly-inclusive environment that satisfies partitional-

unique-response and scant-indifferences, then this environment is obedient.

Proof. Consider a jointly-inclusive environment that satisfies partitional-unique-response and scant-

indifferences and suppose that commitment has no value. By Lemma 4, there is a partitional σ

and a pure strategy ρ such that |Mσ| ≤ |A| and (σ, ρ) is a cheap-talk equilibrium and yields the

persuasion payoff.

First note that every action is induced under (σ, ρ); that is, for any a ∈ A, there exists ω such

that a = ρ(σ(ω)). To see why, suppose toward contradiction that there is an a∗ ∈ A that is not

induced. Since the environment is jointly-inclusive, there exists ω∗ such that

uS(a
∗, ω∗) > uS(a, ω

∗) and uR(a
∗, ω∗) > uR(a, ω

∗) for all a ̸= a∗. (15)

Since |Mσ| ≤ |A| < |M |, there is an unsent message, say m∗.

Consider the strategy profile (σ̂, ρ̂):

� σ̂(ω) = σ(ω) for ω ̸= ω∗, and σ̂ (m|ω∗) =



(1− ε) if m = σ(ω∗)

ε if m = m∗

0 otherwise

.

� ρ̂(m) = ρ(m) for m ̸= m∗, and ρ̂(m∗) = a∗.

22Recall that an environment is jointly-inclusive if for every action a, there is some state ω such that a is the unique
ideal action for both Sender and Receiver in ω.
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We show that (σ̂, ρ̂) is R-BR for sufficiently small ε. For any m /∈ {σ(ω∗),m∗}, Receiver’s belief

upon observing m is unchanged, so ρ̂(m) = ρ(m) remains a best response. For m = m∗, (15)

implies that ρ̂(m∗) = a∗ is the best response. For m = σ(ω∗), the fact the environment satisfies

partitional-unique-response implies that ρ̂ (m) = ρ(m) is the unique best response to µm. Moreover,

since A is finite, this further implies that ρ̂(m) remains the best response for a neighborhood of

beliefs around µm. Therefore, for sufficiently small ε, ρ̂(m) remains a best response.

Now, note that ρ(σ(ω∗)) ̸= a∗ because a∗ is not induced under (σ, ρ). By (15),

US(σ̂, ρ̂) = US(σ, ρ) + ε[uS(a
∗, ω∗)− uS(ρ(σ(ω

∗)), ω∗)]

> US(σ, ρ).

This contradicts the fact that (σ, ρ) yields the persuasion payoff. Hence, we have established that

every action is induced under (σ, ρ).

Next, we show that this fact, coupled with the maintained assumptions, implies that the envi-

ronment is obedient. Recall that (σ, ρ) is a cheap-talk equilibrium; hence for each ω,

uS(ρ(σ(ω)), ω) ≥ uS(ρ(m), ω) for all m ∈ M.

Since every action is induced under (σ, ρ), the inequality above is equivalent to

uS(ρ(σ(ω)), ω) ≥ uS(a, ω) for all a ∈ A.

Moreover, since the environment satisfies scant-indifferences, Lemma 3 implies that

uS(ρ(σ(ω)), ω) > uS(a, ω) for all a ̸= ρ(σ(ω)). (16)

Hence, ΩuS
i = {ω ∈ Ω|ρ(σ(ω)) = ai} and ΩuS

i ∩ΩuS
j = ∅ for i ̸= j. Let Mi = {m ∈ Mσ|ρ(m) = ai}.

For each i and each m ∈ Mi, R-BR of (σ, ρ) implies

∑
ω∈{ω:σ(ω)=m}

µ0(ω)uR(ai, ω) ≥
∑

ω∈{ω:σ(ω)=m}

µ0(ω)uR(a
′, ω) for all a′ ∈ A.
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Summing over all m ∈ Mi, and noting that ∪m∈Mi{ω : σ(ω) = m} = {ω ∈ Ω|ρ(σ(ω)) = ai} = ΩuS
i ,

we have ∑
ω∈ΩuS

i

µ0(ω)uR(ai, ω) ≥
∑

ω∈ΩuS
i

µ0(ω)uR(a
′, ω) for all a′ ∈ A.

Thus, the environment is obedient.

Lemma 10. As |Ω| → ∞, Pr(joint-inclusivity) → 1.

Proof. Let Ea,ω denote the event that a is the unique ideal action for both Sender and Receiver

in state ω. Let Ea = ∪ω∈ΩEa,ω denote the event that action a is the unique ideal action for

both Sender and Receiver in some state. Let E = ∩a∈AEa denote joint-inclusivity: each action is

uniquely ideal for for both Sender and Receiver in some state. Our goal is to show that Pr(E) → 1

as |Ω| → ∞.

Since F and G are atomless and payoffs are independent, in each state ω, the probability that

any given action a is the unique ideal action for Sender is 1/|A|, and the same holds for Receiver.

Hence, Pr(Ea,ω) = 1/|A|2 for any a and ω.

Moreover, for each a, the events Ea,ω are independent across ω. Therefore,

Pr(Ea) = Pr(∪ωEa,ω)

= 1− Pr(∩ωE
c
a,ω)

= 1−
∏
ω∈Ω

Pr(Ec
a,ω)

= 1−
(
1− 1

|A|2

)|Ω|
.
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Finally,

Pr(E) =Pr(∩a∈AEa)

= 1− Pr(∪a∈AE
c
a)

≥ 1−
∑
a∈A

Pr(Ec
a)

= 1− |A|
(
1− 1

|A|2

)|Ω|

→ 1 as |Ω| → ∞.

Lemma 11. As |Ω| → ∞, Pr(commitment has no value) → Pr(obedience).

Proof. Let PPS denote the event that the environment is jointly-inclusive and satisfies partitional-

unique-response and scant-indifferences. We know that in any PPS environment, if commit-

ment has no value, then the environment is obedient (Lemma 9) Hence, Pr (obedience|PPS ) ≥

Pr (commitment has no value|PPS). As |Ω| → ∞, Pr (PPS) → 1 (Lemmas 1, 2, and 10). Hence, As

|Ω| → ∞, Pr (obedience) ≥ Pr (commitment has no value). Moreover, in general Pr (commitment has no value) ≥

Pr (obedience). Thus, as |Ω| → ∞, Pr(commitment has no value) → Pr(obedience).

Say an environment is Sender-inclusive if ΩuS
i is non-empty for all i.

Lemma 12. Pr(obedience|Sender-inclusivity) = 1
|A||A|

Proof. As noted earlier in Equation (14), Pr(obedience|regular uS) =
∏

i:Ω
uS
i is non-empty

1
|A| . If the

environment is Sender-inclusive, no ΩuS
i is empty, so Pr(obedience|Sender-inclusivity & regular uS) =

1
|A||A| .

Since uS is regular with probability one, we have Pr (obedience|Sender-inclusivity) = 1
|A||A| .

Lemma 13. As |Ω| → ∞, Pr(Sender-inclusivity) → 1.

Proof. Obviously, any jointly-inclusive environment is Sender-inclusive. Thus, this Lemma is a

corollary of Lemma 10.

Lemma 14. As |Ω| → ∞, Pr(obedience) → 1
|A||A| .
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Proof. This follows from Lemmas 12 and 13.

Lemmas 11 and 14 jointly yield the fact that, a |Ω| → ∞, Pr(commitment has no value) →
1

|A||A| .
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