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Abstract

Decisions are typically made by drawing on multiple sources of information, yet the

correlation among these sources is often hard to assess. We study robustly optimal strate-

gies — those that maximize the worst-case payoff guarantee across all correlation structures.

With two states and two actions, the robustly optimal strategy is strikingly simple: ignore

all but the best information source. With more actions, the analysis can be extended by

decomposing the problem into binary-action subproblems. With more states, we show a

more sophisticated characterization of robustly optimal strategies via concavification. Our

results offer a new rationale for why ignoring information can be optimal.

1 Introduction

Out of 21 U.S. general election polls showcased by the website RealClearPolitics on Nov. 7, 2016,

only two predicted a Trump victory. Poll aggregators used a variety of models to predict Trump’s

probability of losing, with estimates ranging from 70% to 99%. The lowest estimate of 70% was

reached by Nate Silver’s FiveThirtyEight, whose model emphasized the possibility of correlation

between state polls. The highest estimate of 99% was reached by Sam Wang’s Princeton Election

Consortium, assuming that errors were unlikely to be correlated. The extreme predictions led

to widespread belief that the election was a done deal, setting the stage for a stunning political

upset that few saw coming.1
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methods underlying the two estimates are described in Silver (2016) and Wang (2016).
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Most decisions in life, from the mundane to the important, rely on multiple correlated infor-

mation sources. For example, treatment decisions can be made by consulting multiple doctors,

who base their recommendations on the same test results; investment plans are often informed

by the advice of many financial analysts, who may have incentives to provide contrarian opin-

ions. Yet, assessing how information sources are correlated is hard, as the complexity increases

exponentially with their number — a phenomenon known as the curse of dimensionality. Mis-

interpreting correlations can lead to flawed inferences and suboptimal decisions. Therefore, an

agent may look to make decisions that are robust against potential misspecification of correlation.

In this paper, we study agents who understand each information source individually but lack

knowledge about their correlations, and look for a strategy that yields the best payoff guarantee

against all possible correlation structures. Our main results characterize how agents optimally

disregard certain sources of information to hedge against this uncertainty.

As an example, consider the following scenario: The Centers for Disease Control (CDC) is

setting guidelines for administering a new Covid treatment to a patient population, who has

equal prior probabilities of having either Covid or the Flu. The treatment is designed for Covid,

so it is beneficial for Covid patients, but causes only side effects for those with the Flu. The

payoff matrix is given in Table 1, where the payoffs from no treatment are normalized to zero.

Treatment No Treatment
Covid 30 0
Flu -20 0

Table 1: Payoffs from the Treatment

Since patients with different diseases may develop different symptoms with different probabili-

ties, these symptoms can serve as informative signals to guide treatment decisions. Suppose there

are two well-understood studies: one describes the relationship between the diseases (Covid/Flu)

and the Cough symptom; the other describes the relationship between the diseases and the Fever

symptom. These relationships, represented as Blackwell experiments, are shown in Table 2,

where “+” denotes the presence of a symptom and “−” denotes its absence.

+ −
Covid 0.9 0.1
Flu 0.5 0.5

Cough

+ −
Covid 0.5 0.5
Flu 0.1 0.9

Fever

Table 2: Known Relationships between Diseases and Symptoms

However, no studies have jointly examined both Cough and Fever symptoms, so the CDC

does not know their joint probabilities. Without this knowledge, a strategy that best responds
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to a misspecified correlation structure can perform poorly, so the goal is to design a treatment

guideline that utilizes the available information in a way that is robust to all possible correlations.

A simple strategy that guards against the unknown correlation is to base the treatment

decision on only one symptom. If using only the Cough symptom, the treatment should be

administered if and only if the patient has a positive Cough symptom. This strategy guarantees

a value of 1
2
[0.9 × 30 + 0.5 × (−20)] = 8.5 regardless of the correlation. Similarly, the CDC

could also base the treatment decision solely on the Fever symptom, which guarantees a value of
1
2
[0.5×30+0.1× (−20)] = 6.5. Since the strategy using the Cough symptom guarantees a higher

value, we call it a best-source strategy, which selects a single information source — the best one

when considered individually — and best responds to it.

While the best-source strategy has the virtue of being simple, it completely forfeits the

potential benefits from observing multiple information sources. Could the CDC do better by

using a more sophisticated treatment strategy that incorporates both symptoms? Theorem 1

shows that the answer is no. In fact, it shows that a best-source strategy is always robustly

optimal in any decision problem involving two states and two actions. Moreover, whenever the

best information source is unique, e.g. the Cough symptom in this example, the best-source

strategy is the unique robustly optimal strategy.

With more than two actions, best-source strategies are no longer always optimal, and robustly

optimal strategies will typically use multiple information sources. Nevertheless, we will see that

best-source strategies serve as the basic building blocks from which robustly optimal strategies are

constructed. To illustrate, let us revise the example and suppose now there are two treatments:

one is the previous treatment, designed for Covid, and the other is an additional treatment,

designed for the Flu. The payoff from each treatment is given in Table 3; if the patient receives

both treatments, the total payoff is the sum of the two.

T1 N1

Covid 30 0
Flu -20 0

Treatment 1

T2 N2

Covid -20 0
Flu 30 0

Treatment 2

Table 3: Payoffs from Two Treatments

The CDC now chooses among four actions, in the form of {T1, N1} × {T2, N2}, specifying

whether to administer each of the treatments. Again, a simple strategy that is not vulnerable

to misspecified correlations is to base the treatment decision on only one symptom. It can be

easily checked that using either the Cough or the Fever symptom alone guarantees a value of

8.5 + 6.5 = 15. However, the CDC can do better by basing the decision of Treatment 1 on

the Cough symptom and Treatment 2 on the Fever symptom, as described in Table 4. This

strategy, which uses the respective best information source for each treatment, guarantees a
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value of 8.5 + 8.5 = 17 regardless of the actual correlations between the information sources.

Fever+ Fever−
Cough+ T1 + T2 T1

Cough− T2 No Treatment

Table 4: Using Information from Both Symptoms

A key property of the decision problem above is the additive separability of payoffs across

the two treatments. Indeed, for any decision problem consisting of a collection of binary-state

binary-action subproblems whose utilities are summed, which we call a separable problem, we

show that a robustly optimal strategy is to use the best-source strategy for each subproblem

separately.

The separability property may seem rather restrictive, but in fact, every binary-state decision

problem can be written as a separable problem via what we call the binary decomposition of a

decision problem. Building on this idea, Theorem 2 provides a general construction of robustly

optimal strategies for all finite-action, binary-state decision problems.

With three or more states, we adopt a different approach, analyzing the interim value function

of the decision problem. The space of interim value functions is generally infinite dimensional,

but it can be reduced to a finite-dimensional value vector by focusing on the interim values at

a finite set of beliefs, which we call extremal beliefs. The robustly optimal value, as a function

of these value vectors, satisfies two properties. First, it must be concave. Second, it must be

greater than the value derived from the best-source strategy. Theorem 3 establishes that it is,

in fact, the smallest function satisfying these two properties — the concavification of the value

derived from the best source strategy.

A few behavioral implications follow immediately from our characterizations. First, we derive

a bound on the number of sources needed for robustly optimal strategies, which equals the

number of non-degenerate extremal beliefs of the decision problem.2 The bound depends only

on the decision problem, not on the number or specifics of the information sources. This means

that when the number of information sources grows large, the fraction of information sources a

decision maker pays attention to converges to zero. Second, we characterize which information

sources might be used and which can be safely ignored. Specifically, the sources that may be used

are those that serve as the best standalone source for some decision problems. This highlights

the advantage of gathering information from specialized information sources. Lastly, when the

state is binary, our results also imply an intuitive property of robust aggregation of action

recommendations — the unanimity rule; that is, to always take an action that is unanimously

recommended by all information sources. Although unanimity may seem natural, a well-known

puzzle is that it fails to hold under conditional independence (see, e.g., Sobel, 2014).

2This bound simplifies to |A| − 1 with two states.

4



Our results show that the agent tends to ignore some freely available information when facing

ambiguity on correlations. Information neglect is well-documented, with existing explanations

often attributing this behavior to hidden costs or psychological distortions (see Handel and

Schwartzstein (2018) for a detailed discussion). Our results offer a different rationale: ignor-

ing certain information can lead to more robust decisions when there is ambiguity about the

correlations among various information sources. This explanation has distinct counterfactual

implications. For instance, an agent who finds it costly to acquire or process information would

become more informed as stakes are raised, but one who is concerned with correlation robustness

would not react to such an incentive.

The rest of the paper is organized as follows: Section 2 introduces the formal model. Sec-

tion 3 establishes preliminary results that will be useful throughout the paper. Sections 4 and 5

consider the binary-state and general-state environments, respectively. Section 6 summarizes

the behavioral implications of robustly optimal strategies. Section 7 discusses extensions. Sec-

tion 8 concludes. The remainder of this introduction situates our contribution within the broader

literature.

Related Literature: Our paper studies robust decision making under uncertain correlations

among information sources. The practice of finding robust strategies traces back at least to Wald

(1950). The worst-case approach we adopt is in line with the literature on ambiguity aversion

(Gilboa and Schmeidler, 1989). In particular, a recent experiment by Epstein and Halevy (2019)

documents aversion to ambiguity on correlation structures.

Our approach to modeling information aggregation is closely related to the robust forecast

aggregation literature, which seeks to combine multiple forecasts into a single prediction without

detailed knowledge of the underlying information structure.3 Arieli, Babichenko, and Smorodin-

sky (2018) first proposed an adversarial framework for combining forecasts, and considered vari-

ous types of ambiguity, such as when one information source is Blackwell more informative than

the other, but the agent does not know which. They study a specific decision problem where

the agent aims to minimize the quadratic loss to the true state. By contrast, we focus solely on

ambiguity in the correlation structure and consider general decision problems. Our ambiguity set

is also closely related to that in Levy and Razin (2020), who consider both the correlation among

signals and the correlation across different dimensions of the a multi-dimensional state space.

They adopt an interim approach, where ambiguity arises after the signals have been realized.

By contrast, our approach is ex-ante, where the worst-case correlation does not vary with signal

realizations.4

3This literature often assumes that only forecasts — experts’ beliefs about the state — are observable, instead
of the raw information informing those beliefs, as in our model. See Section 7.3 for further discussion of this
assumption.

4The ex-ante approach may be more natural when the decision maker designs a guideline that must be
established upfront and apply broadly to an organization or a population, while the interim approach may be
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The agent in our model has a maxmin objective — evaluating each strategy by its worst-

case payoff across all correlation structures. Arieli, Babichenko, Talgam-Cohen, and Zabarnyi

(2023) adopts a complementary approach, minmax regret, where the agent concerns the largest

opportunity loss relative to what she could have achieved if she knew the correlation and best

responded accordingly. They show that when the marginal experiments are symmetric, following

a single random information source is robustly optimal under both robustness paradigms.

Our analysis involves understanding and characterizing the least informative joint experi-

ments with given marginals. These least informative joint experiments capture an extreme form

of substitution between information sources, a notion introduced by Börgers, Hernando-Veciana,

and Krähmer (2013). Cheng and Börgers (2024) further explore the relationship between the

joint informativeness of experts’ recommendations and their chance of disagreement.

Several studies have investigated learning from multiple information sources with known

correlations. Liang and Mu (2020) examine a social learning setting where agents’ information

is complementary. Ichihashi (2021) looks at how a firm purchases data from consumers with

potentially correlated information sources. Liang, Mu, and Syrgkanis (2022) study an agent’s

optimal dynamic allocation of attention to multiple correlated information sources. Finally,

Brooks, Frankel, and Kamenica (2024) explores the comparison of experiments with known

correlations and characterize their ranking that is robust to any additional information.

Robustness to correlations has also been studied in other contexts, such as mechanism design.

Carroll (2017) studies a multi-dimensional screening problem, where the principal knows only the

marginals of the agent’s type distribution, and designs a mechanism that is robust to all possible

correlation structures. He and Li (2020) and Zhang (2021) study an auctioneer’s robust design

problem when selling an indivisible good, concerning the correlation of values among different

agents.

2 Model

An agent faces a decision problem Γ = (Θ, µ0, A, ρ), with a finite state space Θ, a prior µ0 ∈ ∆Θ,

a finite action space A, and a utility function ρ : Θ × A → R. To simplify notation, we

define a prior-weighted utility function u(θ, a) = µ0(θ)ρ(θ, a), and will refer to the decision

problem simply as (A, u). With a slight abuse of notation, for a mixed action α ∈ ∆(A), we let

u(θ, α) =
∑

a∈A u(θ, a)α(a).

The agent has access to m information sources, denoted by {Pj}mj=1. Each source is a

marginal experiment, Pj : Θ → ∆Yj, mapping each state to a distribution over some finite

signal set Yj. Let Y = Y1 × · · · × Ym denote the set of all possible profiles of signal realizations,

with typical element y = (y1, . . . , ym). The agent can observe the signals from all marginal

better suited for a decision maker facing a specific, individualized problem where signals have already realized.
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experiments, {Pj}mj=1, but does not know the joint. Thus, the agent conceives of the following

set of joint experiments:

J (P1, ..., Pm) =

P : Θ→ ∆(Y) :
∑
y−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

 .

A strategy for the agent is a mapping, σ : Y → ∆(A), and the set of all strategies is denoted

by Σ. The agent’s problem is to maximize her expected payoff considering the worst possible

joint experiment:

V (P1, . . . , Pm; (A, u)) := max
σ∈Σ

min
P∈J (P1,...,Pm)

∑
θ∈Θ

∑
y∈Y

P (y|θ)u(θ, σ(y)).

When there is no confusion about the relevant decision problem, we omit (A, u) from the argu-

ment of V . We call a solution to the problem a robustly optimal strategy.

If m = 1, the agent observes only a single experiment P : Θ → ∆(Y ) and V (P ) is the

classical value of a Blackwell experiment. In this case, a robustly optimal strategy is just an

optimal strategy for a Bayesian agent.

3 Preliminaries

We begin with some groundwork for our main results. Section 3.1 represents decision problems

as payoff polyhedrons that capture all feasible payoff vectors. We also introduce the dominance

and equivalence relationship between decision problems — tools that will be instrumental in char-

acterizing robustly optimal strategies in Theorems 2 and 3. Section 3.2 reviews the Blackwell

order, drawing on a convenient Zonotope representation of Blackwell experiments and the exis-

tence of the Blackwell supremum in binary-state environments. Finally, Section 3.3 solves the

dual problem — Nature’s minmax problem, which characterizes the value function and plays a

central role in our analysis.

3.1 Payoff Polyhedron

For any decision problem (A, u), the utility for a given action can be seen as a vector in RΘ,

denoted by u(·, a). Let

H(A, u) = co{u(·, a) : a ∈ A} − RΘ
+
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be the associated polyhedron containing all payoff vectors that are achievable or weakly domi-

nated by some mixed action.5 An example of H(A, u) when |Θ| = 2 is depicted in Figure 1.

θ = 2

θ = 1

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

Figure 1: The shaded area represents H(A, u)

Whenever H(Ã, ũ) ⊇ H(A, u), it is immediate that

V (P1, . . . , Pm; (Ã, ũ)) ≥ V (P1, . . . , Pm; (A, u))

for all Blackwell experiments P1, . . . , Pm.

Definition 1. We say that (A, u) dominates (Ã, ũ) if H(A, u) ⊇ H(Ã, ũ). We say that (A, u)

is equivalent to (Ã, ũ) if H(A, u) = H(Ã, ũ).

For instance, if an action is weakly dominated by a mixture of other actions, adding or

removing this action leaves us with an equivalent decision problem.

We can also think of the dominance relationship in terms of a direct map between actions

that lead to a higher utility across all states.

Definition 2. A dominating map from (Ã, ũ) to (A, u) is a function f : Ã→ ∆(A) such that

u(θ, f(ã)) ≥ ũ(θ, ã) for every ã ∈ Ã and every θ ∈ Θ.

Clearly, (A, u) dominates (Ã, ũ) if and only if there exists a dominating map from (Ã, ũ) to

(A, u).

3.2 The Blackwell Order and the Blackwell Supremum

We will use the Blackwell order of experiments throughout the paper. For the sake of complete-

ness, we briefly review it in this subsection.6

5Here and in what follows, whenever + and − are used as operations between sets, they denote the Minkowski
sum and difference.

6The zonotope approach to the Blackwell supremum presented in this section is due to Bertschinger and Rauh
(2014). The lattice structure of the binary-state Blackwell order can also be derived from Kertz and Rösler (1992),
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Definition 3. P : Θ → ∆(Y ) is more informative than Q : Θ → ∆(Z) if, for every decision

problem, we have the inequality V (P ) ≥ V (Q). We also say that P Blackwell dominates Q.

We say that two experiments are Blackwell equivalent if they Blackwell-dominate each

other. We also say that P is strictly more informative than Q (or P strictly Blackwell

dominates Q) if P is more informative than Q and they are not Blackwell equivalent.

There are two other natural ways of ranking experiments. The first uses the notion of a

garbling.

Definition 4. Q : Θ→ ∆(Z) is a garbling of P : Θ→ ∆(Y ) if there exists a function g : Y →
∆(Z) (the “garbling”) such that Q(z|θ) =

∑
y g(z|y)P (y|θ).

Thus Q is a garbling of P when one can replicate Q by “adding noise” to the signal generated

from P . The second ranking uses the feasible state-action distributions.

Definition 5. Given a set of actions A and an experiment P : Θ→ ∆(Y ), the feasible set of P

is

ΛP (A) =

{
λ : Θ→ ∆A

∣∣∣ λ(a|θ) =
∑
y

σ(a|y)P (y|θ) for some σ : Y → ∆(A)

}
.

The feasible set of an experiment specifies what conditional action distributions can be ob-

tained by some choice of strategy σ. One might then say that more information allows for a

larger feasible set.

Blackwell’s Theorem states that these rankings of informativeness are equivalent.7

Blackwell’s Theorem. The following statements are equivalent

1. P is more informative than Q;

2. Q is a garbling of P ;

3. For all sets A, ΛQ(A) ⊆ ΛP (A).

In addition, when |Θ| = 2, Theorem 10 in Blackwell (1953) shows that the above statements

are also equivalent to

4. For all sets A with |A| = 2, ΛQ(A) ⊆ ΛP (A).

Note that all sets A with the same cardinality give essentially the same set ΛP (A), so con-

dition (3) could equivalently be stated as follows: for every n ∈ N, we have ΛQ({1, . . . , n}) ⊆
ΛP ({1, . . . , n}). Similarly, condition (4) can be stated as ΛQ({1, 2}) ⊆ ΛP ({1, 2}). To simplify

notation, when |A| = 2, we will omit A in the notation, simply writing ΛP .

who establish the lattice structure of the univariate convex order.
7For a proof, see e.g. Blackwell (1953) or de Oliveira (2018).

9



Condition (4) is particularly useful as it offers a simple graphical representation of Blackwell

experiments when |Θ| = 2. Figure 2(a) illustrates this using the cough symptom from the

introduction (see Table 2). To characterize ΛP , it suffices to specify the probability of taking one

of the two actions, as the probability of taking the other action is the complementary probability.

The x-axis denotes the probability of taking this action in state 1, and the y-axis denotes the

probability in state 2. This way, ΛP is depicted as a subset of [0, 1]2. Clearly (0, 0), (1, 1) ∈ ΛP

for all P , because these two points represent taking a constant action regardless of the signal

realization. With the information obtained from the Blackwell experiment, additional points can

be obtained. For example, the point (0.1, 0.5) in Figure 2(a) can be achieved if the decision-maker

chooses this action precisely when the patient does not have a cough symptom. Symmetrically,

the decision-maker could choose the same action precisely when the agent has a cough symptom,

which yields the point (0.9, 0.5). Such pure strategies give us the extreme points of the polytope

ΛP and the possibility of randomization convexifies the set. Thus, ΛP is a convex and symmetric8

polytope in [0, 1]2, corresponding to the entire shaded area. Conversely, as shown in Bertschinger

and Rauh (2014), any convex and symmetric polytope in [0, 1]2 correspond to ΛP for some P .

λ(·|θ = 2)

(0,0) λ(·|θ = 1)

(1,1)

(0.1, 0.5)
(0.9,0.5)

(a) An example of ΛP (A) with |Θ| = |A| = 2

(0,0)

ΛP1

ΛP2

ΛP

(b) ΛP as the convex hull of ΛP1
∪ ΛP2

Figure 2

Having reviewed the Blackwell order, we now turn our attention to a concept that will be

used extensively in our analysis — the Blackwell supremum.

Definition 6. Let P1, P2, . . . , Pm be arbitrary Blackwell experiments. We say that P is the

Blackwell supremum of P1, P2, . . . , Pm if

1. P is more informative than P1, P2, . . . , Pm;

2. If Q is more informative than P1, P2, . . . , Pm, then Q is also more informative than P .

8By symmetric we mean if λ ∈ ΛP , (1, 1)− λ ∈ ΛP .
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By definition, if there are two Blackwell suprema, they must Blackwell dominate each other.

This means that any two Blackwell suprema must be Blackwell equivalent and so Blackwell

suprema, if they exist, are unique up to Blackwell equivalence.

Furthermore, when the state space is binary, the Blackwell supremum always exists and can

be characterized using the feasible set, as illustrated in Figure 2(b). From Blackwell’s theorem,

for any Q that is more informative than P1, ..., Pm, the corresponding feasible set ΛQ must contain

ΛP1 , . . . ,ΛPm . Since the feasible set is always convex, ΛQ must also contain co(ΛP1∪ΛP2 · · ·∪ΛPm).

Moreover, the set co(ΛP1∪ΛP2 · · ·∪ΛPm) is convex and symmetric, and so it corresponds to some

Blackwell experiment P , which is thus the least informative Blackwell experiment that dominates

P1, ..., Pm — the Blackwell supremum. This observation yields the following lemma:

Lemma 1. When |Θ| = 2, the Blackwell supremum always exists. An experiment P is the

Blackwell supremum of P1, P2, . . . , Pm if and only if ΛP = co(ΛP1 ∪ ΛP2 · · · ∪ ΛPm).

Proof. See Proposition 16 in Bertschinger and Rauh (2014).

It is useful to note that the above lemma holds specifically for |Θ| = 2. When |Θ| ≥ 3,

a Blackwell supremum may not exist, as illustrated in Example 18 of Bertschinger and Rauh

(2014).

3.3 Nature’s MinMax Problem

Most of our focus will be on the robustly optimal strategies for the agent, but it will be helpful to

first understand Nature’s MinMax problem. Since the objective function is linear in both σ and

P , and the choice sets of σ and P are both convex and compact, the minimax theorem (Sion,

1958) implies that

V (P1, . . . , Pm) = min
P∈J (P1,...,Pm)

max
σ∈Σ

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym))

= min
P∈J (P1,...,Pm)

V (P ). (1)

That is, the value of the agent’s maxmin problem equals the value of a minmax problem

where Nature chooses an experiment in the set J (P1, . . . , Pm) to minimize a Bayesian agent’s

value in the decision problem.

Let D(P1, . . . , Pm) denote the set of Blackwell experiments that dominates P1, ..., Pm.9 Every

experiment in J (P1, . . . , Pm) must be more informative than each Pj, since the projection onto

the jth coordinate is a garbling, so J (P1, . . . , Pm) ⊆ D(P1, . . . , Pm). The set D(P1, . . . , Pm) is in

9Technically, if we allow any finite set to be a signal space, D is not a set in the strict set-theoretical sense.
We can resolve this issue by fixing a large enough universe U of signals. For our purposes, it is enough if every
finite subset of N are in U and all cartesian products of sets in U are also in U .
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general a larger set, because not every experiment that dominates P1, ..., Pm can be represented

as a joint experiments with marginals P1, ..., Pm.10 However, the next lemma shows that relaxing

Nature’s problem to choosing an experiment from the set D(P1, . . . , Pm) does not change the

value of the problem.

Lemma 2.

V (P1, . . . , Pm) = min
P∈D(P1,...,Pm)

V (P ) (2)

Proof. See Appendix A.1.

The idea underlying Lemma 2 is that in the relaxed problem above, Nature could restrict

attention to the experiments that are Blackwell minimal — those that do not strictly Blackwell

dominate any other experiment in D(P1, . . . , Pm). Additionally, any Blackwell minimal element

in this set can be represented as a joint experiment in J (P1, . . . , Pm), as shown in Appendix A.1.

Lemma 2 is particularly useful when the state is binary. Under binary states, the Blackwell

supremum P of P1, ..., Pm exists, and it is the unique (up to Blackwell equivalence) Blackwell

minimal element in D(P1, . . . , Pm). Therefore, P solves (2) regardless of the decision problem,

yielding the following corollary.

Corollary 1. When |Θ| = 2,

V (P1, ..., Pm) = V (P (P1, ..., Pm))

where P (P1, ..., Pm) is the Blackwell supremum of experiments {P1, ..., Pm}.

Thus, in binary-state decision problems, the agent’s value from using a robust strategy is the

same as the value she would obtain if she faced a single experiment — the Blackwell supremum

of all marginal experiments. Moreover, the Blackwell supremum depends only on the marginal

experiments, and not on the particular decision problem.

4 Binary State Environment

4.1 Binary-State Binary-Action Problems

As seen in the introductory example, one simple strategy that generates a robust value indepen-

dent of the correlations among the marginal information sources is to choose exactly one marginal

experiment from {P1, . . . , Pm} and play the optimal strategy that uses that information alone,

ignoring the signal realizations of all other experiments. By choosing the marginal experiment

10For a simple example, consider two experiments P1 and P2 whose signal spaces Y1 and Y2 are singletons.
Then J (P1, P2) contains only the completely uninformative experiment while D(P1, P2) contains all Blackwell
experiments.
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optimally, the agent achieves an expected payoff of maxj=1,...,n V (Pj), regardless of the actual

joint experiment P ∈ J (P1, . . . , Pm). We call such a strategy a best-source strategy.

In some cases, it is clear that a best-source strategy is robustly optimal. Suppose, for example,

that we have two information sources, P1 and P2, and that P1 is more informative than P2. We

can then consider a correlation structure where the signal of P2 is generated by garbling the signal

of P1. Consequently, after observing the signal from P1, observing signals from P2 provides no

additional information. Therefore, the agent loses nothing by ignoring P2, and the best-source

strategy that uses only P1 is optimal.

The interesting cases are when information sources are not Blackwell-ranked (which will often

be the case, given the demanding nature of the Blackwell order). In such cases, the Blackwell

supremum is strictly more informative than any single information source, so one may hope to

do better than a best-source strategy by combining different sources. Surprisingly, Theorem 1

shows that, in decision problems with binary states and binary actions, the agent can never do

better than a best-source strategy. Moreover, if the information sources satisfy full support and

we exclude cases where multiple information sources are optimal, then any strategy that uses

more than one source is strictly suboptimal.

Theorem 1. For all (A, u) with |A| = |Θ| = 2, any best-source strategy is robustly optimal. In

other words,

V (P1, . . . , Pm) = max
j=1,...,m

V (Pj).

In addition, if each marginal experiment has full support, i.e., Pj(yj|θ) > 0 for all j, yj, θ, and

argmaxj=1,...,m V (Pj) is a singleton, then all robustly optimal strategies are best-source strategies.

Proof. To simplify notation, we write P to refer to the Blackwell supremum, P (P1, . . . , Pm). By

Corollary 1, it suffices to show that V (P ) = maxj=1,...,m V (Pj). By Lemma 1,

ΛP = co (ΛP1 ∪ · · · ∪ ΛPm) . (3)

Now, the maximum utility achievable given P is V (P ) = maxλ∈ΛP

∑
a,θ u(θ, a)λ(a|θ). Since

the maximand is linear in λ, the fundamental theorem of linear programming states that the

maximum is achieved at an extreme point of ΛP . By (3), an extreme point of ΛP must belong

to some ΛPj . Hence, we have

V (P ) = max
λ∈ΛPj

∑
a,θ

u(θ, a)λ(a|θ) = V (Pj) ≤ max
j′=1,...,m

V (Pj′).

Since P is more informative than every Pj, we also have V (P ) ≥ maxj′=1,...,m V (Pj′), which

concludes the proof of the theorem’s first statement. The proof of the second part (uniqueness)

requires different arguments, so we defer it to Appendix B.6.
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Figure 3: The maximum is achieved at an extreme point that belongs to ΛP2

The idea of Theorem 1 can be visualized in Figure 3 for two marginal experiments. Each

marginal Blackwell experiment P1, P2 can be represented by ΛP1 ,ΛP2 , the set of feasible state-

action distributions generated by the experiment. The corresponding ΛP for Blackwell supremum

P is the convex hull of ΛP1∪ΛP2 . Since the utility is linear with respect to λ ∈ ΛP , the maximum

is achieved at an extreme point, which belongs to either ΛP1 or ΛP2 , and thus can be achieved

by using a single marginal experiment.

4.2 Separable Problems

While best-source strategies are sufficient in binary-state, binary-action decision problems, more

complicated problems often require the agent to use more sophisticated strategies to robustly

aggregate information from multiple sources. However, as we will see, best-source strategies form

the building blocks from which the robustly optimal strategies are constructed. For example,

in the Covid example with two treatments presented in the introduction, we saw that a simple

yet robust strategy that uses multiple information sources is to consider the two treatments

separately, using the corresponding best-source strategy for each treatment decision.

As a first step toward the analysis of robustly optimal strategies in general binary-state

decision problems, we generalize this idea in the example to a class of decision problems, which

we call separable.

Definition 7. A binary-state decision problem (A, u) is a separable problem if A can be

written as a product A1 × · · · × Ak where |A`| = 2 for all ` = 1, ..., k, and

u(θ, a) = u1(θ, a1) + · · ·+ uk(θ, ak)

for some {u` : Θ× A` → R}k`=1.

We will use
⊕k

`=1(A`, u`) to refer to a separable problem and we refer to each of the binary-

action decision problems, (A`, u`), as a subproblem.
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As highlighted in the Covid example, a simple strategy in separable problems is to use the

best-source strategy in each of the subproblems, which guarantees a payoff of
∑k

`=1 maxj=1,...,m V (Pj; (A`, u`))

regardless of the correlations between the information sources. Hence, this value provides a lower

bound on the robustly optimal value:

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

The following lemma further shows that the above inequality is indeed an equality. This fol-

lows from a special property highlighted in Corollary 1 — that in binary-state environments,

there exists a single P (P1, . . . , Pm) that uniformly minimizes the agent’s value across all decision

problems.11

Lemma 3. For any separable problem
⊕k

`=1(A`, u`),

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, let σ` : Y → A` be a pure best-source strategy for subproblem (A`, u`). Then σ : Y →
A1 × · · · × Ak defined by

σ(y1, ..., ym) =

(
σ`(y1, ..., ym)

)k
`=1

for all y1, ..., ym (4)

is a robustly optimal strategy for decision problem
⊕k

`=1(A`, u`).

Proof. See Appendix A.2.

4.3 General Decision Problems and Decompositions

The special structure of separable problems yields simple robustly optimal strategies. To what

extent can this structure be applied in tackling more general decision problems? We show in

this section that every binary-state decision problem is equivalent to a separable problem in

the sense of Definition 1. The idea is to decompose an n-action decision problem into n − 1

binary-action decision problems and use these subproblems to construct the separable problem

that is equivalent to the original problem. We call the resulting separable problem the binary

decomposition.

11In contrast, with three or more states, Nature’s worst-case joint experiment in Eq. (1) typically depends on

the decision problem. Therefore, minP∈J V (P ;
⊕k

`=1(A`, u`)) ≥
∑k
`=1 minP∈J V (P ; (A`, u`)), which in general

is not an equality.
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H(A, u)

(a) Binary decomposition

θ = 2

(0,0) θ = 1

u1(·, 1)

u3(·, 1)

H(A, u)

(b) A nonconsecutive sum of u`(·, 1) lies in
the interior of H(A, u)

Figure 4

Before we define the binary decomposition, we make a normalization to simplify exposition.

First we remove all weakly-dominated actions,12 so that actions can be ordered such that a higher

action best responds to a higher belief on θ1:

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Moreover, by adding a constant vector, we can normalize u(·, a1) = (0, 0).

Definition 8. Given a decision problem (A, u), the binary decomposition of (A, u) is a sep-

arable problem
⊕n−1

`=1 (A`, u`) where

A` := {0, 1} , u`(·, 0) = (0, 0), u`(·, 1) = u(·, a`+1)− u(·, a`).

The key idea underlying the binary decomposition is to decompose the original problem into

binary-action decision problems that compare each pair of consecutive actions. This can be visu-

alized in Figure 4(a). The four-action decision problem is decomposed into three binary-action

decision problems, by examining the difference vectors u(·, a`+1) − u(·, a`). Each subproblem of

the decomposition can be interpreted as a “local” comparison between two consecutive actions.

Notice that every feasible payoff vector in the original problem can be replicated in the

binary decomposition, due to the fact that u(·, ai) =
∑i−1

`=1 u`(·, 1) +
∑n−1

`=i u`(·, 0) for all i =

1, ..., n. So H(A, u) ⊆ H
(⊕n−1

`=1 (A`, u`)
)
. Of course, the binary decomposition

⊕n−1
`=1 (A`, u`)

could introduce additional feasible payoff vectors. For example, in the example in Figure 4(b),

the strategy (1, 0, 1) in the binary decomposition yields a payoff vector that is infeasible in the

12An action a ∈ A is weakly-dominated if there exists α ∈ ∆A such that u(·, a) ≤ u(·, α) and u(·, a) 6= u(·, α).
If there are duplicated actions, we remove all but keep one copy.
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original problem. However, this additional payoff vector lies in the interior of H(A, u), and thus

it is dominated by one of the original (possibly mixed) actions. The next lemma shows that this

is generally true, so we have H(A, u) = H
(⊕n−1

`=1 (A`, u`)
)

— any decision problem is equivalent

to its binary decomposition in the sense of Definition 1.

Lemma 4. (A, u) is equivalent to its binary decomposition.

Proof. See Appendix A.3.

Lemma 4 implies that the set of dominating maps (see Definition 2) from
⊕n−1

`=1 (A`, u`) to

(A, u) is non-empty. Together with Lemma 3, it allows us to derive a robustly optimal strategy

for any decision problem (A, u) through its binary decomposition.

Theorem 2. Let
⊕n−1

`=1 (A`, u`) be the binary decomposition of (A, u), and σ` be a pure best-source

strategy for (A`, u`). Then

V (P1, . . . , Pm; (A, u)) =
n−1∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).

Moreover, for any dominating map f from
⊕n−1

`=1 (A`, u`) to (A, u), σ∗f (y) := f(σ1(y), . . . , σn−1(y))

is robustly optimal.

Proof. See Appendix A.4.

Theorem 2 allows the construction of a robustly optimal strategy for any decision problem

(A, u) according to a two-step procedure:

1. For each subproblem, (A`, u`), find a best-source strategy σ` (which we know is robustly

optimal by Theorem 1).

2. For each realization y, pick a (mixed) action σ∗(y) ∈ ∆(A) such that u(·, σ∗(y)) ≥∑n−1
`=1 u`(·, σ`(y)).13

Notably, once σ`(·) has been determined in Step 1, the marginal experiments, P1, . . . , Pm, play

no role in Step 2. In other words, the marginal experiments only influence the ultimate choice

of action in Step 1, and more specifically through its effect on the choice of σ`(y) in each of the

subproblems.

In contrast to Theorem 1, Theorem 2 also highlights the non-uniqueness of robustly optimal

strategies when there are three or more actions. This is because there could be multiple σ∗

satisfying u(·, σ∗(y)) ≥
∑n−1

`=1 u`(·, σ`(y)) for all y. For example, in the Covid example with two

13Note that in Theorem 1, the agent does not need to randomize. In contrast, the construction of a robustly
optimal strategy in Theorem 2 may require randomization. We provide an example in Appendix B.1 where all
robustly optimal strategies require randomization.
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treatments in the introduction, the robustly optimal strategy we derived in Table 4 recommends

no treatment when a patient has no symptoms. However, note that giving neither treatment is

dominated by giving both treatments, so replacing No Treatment with T1 +T2 does not decrease

the guaranteed value, thus yielding another robustly optimal strategy. Why can a robustly

optimal strategy play a dominated action? Because the worst-case correlation structure against

that strategy will put probability 0 on the symptom realization (Cough−, Fever−).

Theorem 2 delivers two immediate corollaries.

Corollary 2. For any decision problem (A, u) and any collection of experiments {Pj}mj=1, there

exists a subset of marginal experiments {Pj}j∈J⊆{1,...,m} with |J | ≤ |A| − 1, such that

V (P1, · · · , Pm; (A, u)) = V ({Pj}j∈J ; (A, u)).

Corollary 2 establishes a bound, |A| − 1, on the number of information sources needed for

a robustly optimal strategy. Note that this bound is independent of the fine details of the

decision problem, such as the exact cardinal utilities of the agent, and the details of the marginal

information sources available to the agent.

Corollary 3. Suppose
⊕n−1

`=1 (A`, u`) is the binary decomposition of (A, u). For any j,

V (P1, ..., Pm; (A, u)) > V (P1, . . . , Pj−1, Pj+1, . . . , Pm; (A, u))

if and only if V (Pj; (A`, u`)) > maxj′ 6=j V (Pj′ ; (A`, u`)) for some ` = 1, ..., n− 1.

Corollary 3 shows that an additional marginal experiment robustly improves the agent’s value

if and only if it outperforms all other marginal experiments in at least one of the subproblems

of the decomposition. In particular, an experiment that performs reasonably well across all sub-

problems can be completely ignored if, for each subproblem, there is some other, more specialized

experiment that is the best. The next example further illustrates that even the best standalone

information source may be ignored.

Example 1. We revisit the Covid example with two treatments in the introduction. Suppose in

addition to the Cough and Fever, now we have a third informative symptom, Headache, whose

relationship to the diseases is given in Table 5.

+ −
Covid 0.72 0.28
Flu 0.28 0.72

Table 5: Headache symptom
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Note that in either treatment 1 or treatment 2, when using the Headache symptom alone, the

agent can achieve a value of 1
2
(0.72 × 30 + 0.28 × (−20)) = 8. This means that Headache is

the best standalone information source, because it yields a value of 8 + 8 = 16, which is greater

than 15, the value of using either the Cough or Fever symptom alone. However, this symptom

is never the best information source for either treatment 1 or treatment 2, as the value it yields

is lower than 8.5, the value achieved by using the Cough symptom for treatment 1 or using the

Fever symptom for treatment 2. Thus, despite being the best standalone information source for

the overall decision problem, Headache can be ignored because it fails to be the best information

source for any single subproblem.

5 General-State Decision Problems

In this section, we turn to general-state decision problems and characterize the robustly optimal

value using concavification. This characterization offers an explicit formula for the robustly

optimal value and implies several corollaries that speak to the structure of robustly optimal

strategies.

It is worth noting why our previous approach for binary-state decision problems would not

extend to general-state decision problems: First, with more states, it is not immediately clear

how to decompose a general decision problem into more “elementary” ones. Second, the non-

existence of the Blackwell supremum implies that in Nature’s minmax problem Eq. (1), there may

no longer be a single experiment that uniformly minimizes the agent’s value across all decision

problems, exacerbating the complexity of the analysis (see Footnote 11). Lastly, an agent may

want to use multiple information sources even in simple binary-action decision problems, as

illustrated in Example 2.

Example 2. Suppose that there are three states θ1, θ2, θ3. The marginal experiments are both

binary with respective signals x1, x2 and y1, y2, as given by Table 6.

PX
PX(x|θ) x1 x2

θ1 1 0
θ2 1 0
θ3 0 1

PY
PX(y|θ) y1 y2

θ1 1 0
θ2 0 1
θ3 0 1

Table 6

Intuitively, experiment PX indicates whether the state is θ3 or not and experiment PY indicates

whether the state is θ1 or not. Note that upon observing both experiments, the agent obtains

perfect information, and so in any decision problem, the agent achieves the perfect information

payoff.
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Let A = {0, 1} and suppose that the utilities are as follows:14

u(θ, a = 1) = 1 (θ ∈ {θ1, θ3})− 0.9 · 1 (θ = θ2) ,

u(θ, a = 0) = 0.

By using only one information source (either PX or PY ), a = 1 is the unique optimal action for

any signal realization. Therefore, the agent’s expected payoff is 1 − 0.9 + 1 = 1.1. By contrast,

when using both information sources, the full information payoff is 1 + 0 + 1 = 2.

5.1 Value Functions and Extremal Beliefs

Before proceeding to our characterization theorem, we first introduce useful terminology that will

be important for our general approach in this section. Rather than viewing a decision problem

as a collection of actions and a utility function, we instead describe a decision problem via its

(interim) value function v : ∆(Θ)→ R:

v(µ) := max
a∈A

∑
θ∈Θ

µ(θ)ρ(θ, a).

If the value functions of two decision problems differ by an affine function, g(µ), then these two

decision problems are equivalent, in the sense that their robustly optimal values will differ by

g(µ0) for any marginal experiments. Hence, without loss of generality, we normalize v(δθ) = 0

for all θ ∈ Θ.

The value function of a finite decision problem is convex and piecewise linear. We denote

the epigraph of v by epi(v) = {(µ,w) : w ≥ v(µ), µ ∈ ∆(Θ)}. The set of extreme points of

the epigraph, denoted by ext(epi(v)), is finite and contains {(δθ, v(δθ))}θ∈Θ, where δθ denotes the

degenerate belief on θ. Let Ev denote the projection of ext(epi(v)) on ∆(Θ). We call the elements

of Ev the extremal beliefs.15 Let Kv denote the set of non-degenerate extremal beliefs,

that is, those extremal beliefs that do not belong to {δθ}θ∈Θ. See Figure 5 for an illustration

when |Θ| = 2 and |A| = 3.

As we will mainly work with value functions throughout this section, we rewrite the robustly

optimal values in terms of v. Note that each Blackwell experiment P induces a posterior dis-

tribution τP ∈ ∆(∆Θ)).16 From Eq. (1), the robustly optimal value of a value function v when

14Recall that the payoffs here have been weighted by the prior: u(θ, a) = µ0(θ)ρ(θ, a).
15Similar approaches have been used in Bergemann, Brooks, and Morris (2015) and Lipnowski and Mathevet

(2017), where these objects are called “extremal markets” or “outer points.”
16More precisely, the induced posterior distribution τP ∈ ∆(∆(Θ)) associated with a Blackwell experiment

P : Θ→ ∆Y is defined as
τP (E) =

∑
y∈YE

∑
θ

µ0(θ)P (y|θ),
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facing information sources, P1, ..., Pm, is then

V (P1, ..., Pm; v) = min
P∈J (P1,...,Pm)

∫
v(µ)τP (dµ). (5)

v(µ)

0 µ1

Figure 5: Interim value function and extremal beliefs when |Θ| = 2 and |A| = 3. Each dashed
line denotes the agent’s interim payoff from an action, and their upper envelope (in red) is
the interim value function. The shaded area represents the epigraph, and the blue dots are its
non-degenerate extreme points, whose projections are non-degenerate extremal beliefs.

5.2 Convexification and Concavification

The concepts of convex and concave envelope of a function will play an important role in our

analysis, so we briefly review them.

Let X be a subset of a vector space, and f : X → R. The convexification of f , denoted by

conv(f), is the largest convex function defined on co(X) below f . That is, for any z ∈ co(X),

conv(f)(z) = sup{g(z)|g ∈ Rco(X) is convex and g(x) ≤ f(x), ∀x ∈ X}.

Similarly, we define the concavification of f as

conc(f)(z) = inf{g(z)|g ∈ Rco(X) is concave and g(x) ≥ f(x),∀x ∈ X}.

The convexification and concavification are well-defined real functions, as long as the sets in their

where E ⊆ ∆(Θ) is a Borel set and

YE =

{
y ∈ Y

∣∣∣ µ0(θ)P (y|θ)∑
θ µ0(θ)P (y|θ)

∈ E,∀θ
}
.

In our case, the posterior distribution always has finite support, so it is enough to consider E = {µ} for some
µ ∈ ∆(Θ).
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definitions are non-empty, which will be assumed whenever these concepts are used. Note that

f need not be defined on a convex set, but its convexification or concavification will be extended

to the convex hull of f ’s domain.

An equivalent definition of concavification that will be useful in our analysis is conc(f)(z) =

sup{y|(z, y) ∈ co(G(f))}, where G(f) = {(x, f(x))|x ∈ X} is the graph of f .17

5.3 Robustly Optimal Value

As shown by Example 2, with general state spaces, best-source strategies are not robustly op-

timal even in very simple decision problems involving two actions. Nevertheless, they form the

backbone of robustly optimal strategies, similarly to Theorem 2. To see the idea, for any decision

problem with value function v, the best source strategy provides a lower bound on the robustly

optimal value:

V (P1, . . . , Pm; v) ≥ max
j=1,...,m

V (Pj, v).

Now suppose that (A`, u`) are decisions problems with corresponding value functions λ`v`, where

λ1, . . . , λk ∈ [0, 1] with
∑k

`=1 λ` = 1 and
∑k

`=1 λ`v` = v. Then, (A, u) is equivalent to
⊕k

`=1(A`, u`),

and by the same argument used in Section 4.2, V (P1, . . . , Pm; v) ≥
∑k

`=1 λ` maxj=1,...,m V (Pj, v`).

This proves that

V (P1, . . . , Pm; v) ≥ conc

(
max

j=1,...,m
V (Pj, ·)

)
(v).

Theorem 3 shows two things: First, it simplifies the above concavification problem by reducing

the dimension of the relevant value functions. Second, it shows that the above inequality holds

as an equality in this reduced dimension.

To reduce the dimension, we summarize a value function by its values on extremal beliefs

µ ∈ Ev. Formally, for each (normalized) value function v, evaluating it on Ev obtains vv ∈ REv
−

where vv(µ) = v(µ) for all µ ∈ Ev. Following our normalization of decision problems, we call a

vector v ∈ REv
− a value vector if v(δθ) = 0 for all θ ∈ Θ. Thus, the set of all value vectors is

equivalent to RKv
− . Note that some value vector v ∈ RKv

− may not correspond to a value function,

due to the convexity constraint of the value functions. However, the convexification conv(v) is

always a well-defined value function. In particular, convexifying the value vector obtained from

a value function yields the value function itself, i.e., conv(vv) = v.

For any experiment P , define

W (P ; ·) : RKv
− → R

v 7→ V (P ; conv(v))

17See Chapter IV, Proposition 2.5.1 in Hiriart-Urruty and Lemaréchal (1996).
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as the value of the experiment P given a value vector v. We are now ready to formally state

Theorem 3.

Theorem 3. For any value function v with a corresponding value vector vv,

V (P1, ..., Pm; v) = conc(max{W (P1; ·), ...,W (Pm; ·)})(vv).

Proof. See Appendix A.5.

Theorem 3 offers a geometric characterization for the robustly optimal value through con-

cavification. To illustrate the connection to Theorem 2, suppose that (λ`,v`)
m
`=1 constitutes a

solution to the concavification:

λ` ≥ 0,
m∑
`=1

λ` = 1,
m∑
`=1

λ`v` = vv,
m∑
`=1

λ`W (P`,v`) = conc(max{W (P1; ·), ...,W (Pm; ·)})(vv).

Now let (A`, u`) be a finite action decision problem whose interim value function is λ`conv(v`).

It can be shown that
∑m

`=1 λ`conv(v`) ≤ v and so using the language of Section 3, (A, u) is a

decision problem that dominates
⊕m

`=1(A`, u`). The above equality essentially shows that

V (P1, . . . , Pm; (A, u)) = V

(
P1, . . . , Pm;

m⊕
`=1

(A`, u`)

)
=

m∑
`=1

V (P`, (A`, u`)).

Given the above analogy to the idea of decomposition underlying Theorem 2, the solution to

the concavification also generates robustly optimal strategies in the same manner here.

Corollary 4. Suppose that λ∗` ∈ R+,v
∗
` ∈ RKv

− , j = 1, ...,m are such that

m∑
`=1

λ∗` = 1,
m∑
`=1

λ∗`v
∗
` = vv,

m∑
`=1

λ∗`W (Pj;v
∗
`) = V (P1, . . . , Pm;vv).

Let (A`, u`) be a finite-action decision problem whose induced value function is conv(λ`v
∗
`) and

σ∗` : Y` → ∆(A`) be an optimal strategy given Blackwell experiment P`. Then (A, u) dominates⊕m
`=1(A`, u`) and for any dominating map, f :

⊕m
`=1(A`, u`)→ ∆(A),

σ∗f (y1, . . . , ym) = f(σ∗1(y1), . . . , σ∗m(ym))

is a robustly optimal strategy.

Proof. See Appendix A.6.
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6 Behavioral Implications of Robustly Optimal Strategies

6.1 Ignoring Information

Theorem 3 offers two immediate corollaries that speak to which information sources can be

ignored and how many of them are needed.

Corollary 5. There exists a subset of information sources {Pj}j∈J⊆{1,...,m} with |J | ≤ |Kv|, such

that

V (P1, ..., Pm; v) = V ({Pj}j∈J ; v).

Proof. See Appendix A.7.

Corollary 5 establishes that a decision maker would never need to use more information

sources than the number of nondegenerate extremal beliefs. The proof follows from the familiar

idea that, in a k-dimensional concavification problem, the concavification value can be achieved

by a convex combination of at most k + 1 points. One subtlety here is that such an argument

only gives us a bound of |Kv| + 1. To derive the tighter bound |Kv|, we utilize the positive

homogeneous property of the W (P ; ·) function to further reduce dimensions.

We show in Appendix B.2 that |Kv| can be further bounded by a function of |Θ| and |A|:

|Kv| ≤

(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)
− 2|Θ|.

When |Θ| = 2, this bound reduces to |A| − 1, the bound given in Corollary 2.

Corollary 6. Suppose that V (P`; v) ≤ maxj 6=` V (Pj; v) for all v. Then V (P1, ..., Pm; v) =

V (P1, ..., P`−1, P`+1, ..., Pm; v) for all v.

Proof. See Appendix A.8.

Corollary 6 tells us that if an information source P` is never the unique best information

source among {Pj}mj=1 for any decision problem, then it can be safely ignored. Note that being

never the best information source is weaker than P` being Blackwell dominated by one of the

other experiments, because the experiment that outperforms P` may depend on the particular

decision problem.18

6.2 Aggregating Action Recommendations and Unanimity

Consider the leading question from Piccione and Rubinstein (2024):

18Cheng and Börgers (2024) show that this condition is equivalent to P` being dominated by a convex combi-
nation of the rest of the experiments.
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“The proportion of newborns with a specific genetic trait is 1%. Two conditionally

independent screening tests, A and B, are used to identify this trait in all newborns.

However, the tests are not precise. Specifically, it has been found that:

1. 70% of the newborns who are found to be positive according to test A have the

trait.

2. 20% of the newborns who are found to be positive according to test B have the

trait.

Suppose that a newborn is found to be positive according to both tests. What is your

estimate of the probability that this newborn has the trait?”

A correct understanding that the signals are conditionally independent would result in an

updated posterior of 98% that the newborn has the trait! However, Piccione and Rubinstein

(2024) report that many responses lie between 20% and 70%. Our model provides a possible ex-

planation for this pattern: If subjects do not believe or understand the conditional independence

of the tests and instead are cautious as to what may be their correlation, they would indeed act

as if their beliefs are between 20% and 70%.

To formalize this statement, consider a decision problem (A, u) with a binary state space,

{θ1, θ2}, normalized as in Section 4.3. Recall that, after normalization, actions can be ordered

according to their optimality with respect to beliefs. To extend this order to mixed strategies,

let B(α) ⊂ [0, 1] denote the set of beliefs that are consistent with interim optimality of action

α ∈ ∆(A):

B(α) :=

{
µ(θ1) :

∑
θ

µ(θ)u(α, θ) = max
a∈A

∑
θ

µ(θ)u(a, θ)

}
.

We can interpret B(α) as the revealed posterior beliefs that rationalize an agent’s choice of α.

Now, define the belief order as α � β if B(α) dominates B(β) in the strong set order19 — higher

actions correspond to higher revealed beliefs. For a ∈ A, this order corresponds to the labeling

in Section 4.3.

Now, suppose that the agent sees only a single signal yj from a single information source

Pj. Let a∗j(yj;A, u) denote the optimal action given the observation of yj in isolation. We will

interpret these actions as the recommended actions from individual information sources.

The following corollary of Theorem 2 shows that there exists some robustly optimal strat-

egy such that the realized actions lie between the recommended actions from the individual

information sources.

19Given S, T ⊆ [0, 1], S dominates T in the strong set order if, for any s ∈ S and t ∈ T , max{s, t} ∈ S and
min{s, t} ∈ T .
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Corollary 7. Let (A, u) be a binary-state decision problem. There exists some robustly optimal

strategy σ, such that for all realizations of signals y,

min
j=1,...,m

a∗j(yj;A, u) � σ(y1, . . . , ym) � max
j=1,...,m

a∗j(yj;A, u),

where the minimum and maximum is with respect to the belief order. In other words, if a =

minj=1,...,m a
∗
j(yj;A, u) and a = maxj=1,...,m a

∗
j(yj;A, u),

B(a) ≤ B(σ(y1, . . . , ym)) ≤ B(a),

where the inequalities are in the strong set order.

Proof. See Appendix A.9.

The above corollary says that the revealed beliefs of the robustly optimal strategy always

lie between the most extreme beliefs from the individual signals. In particular, considering the

worst-case correlation in the question posed by Piccione and Rubinstein (2024) will always lead to

an answer between 20% and 70%, in contrast to the 98% if we assume conditional independence.

Another implication of the above corollary is that the robustly optimal strategy satisfies

unanimity : if under a signal realization y all marginal information sources agree on the optimal

action, i.e.

a = a∗1(y1) = · · · = a∗m(ym),

then the robustly optimal strategy will prescribe that action. While unanimity seems like an

appealing and natural property, it does not necessarily hold when the joint information structure

is perfectly known to the decision maker. For instance, in the example above, if both tests led

to 70% of newborns having the trait, the updated posterior would be even higher than 98%.

7 Discussion

This section discusses some extensions of our model. Section 7.1 discusses the implications of

additional knowledge about the correlation structure. Section 7.2 shows that Theorem 1 extends

to scenarios where the agent has even less knowledge about the information sources — introducing

an additional layer of ambiguity regarding the marginal experiments. Section 7.3 considers the

case where the information sources available to the agent have already been processed by experts.

Section 7.4 studies the scenario where marginal experiments are perfect news signals.
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7.1 Knowledge of Correlation

7.1.1 Common Origin

A natural reason for the correlation among multiple information sources is a shared, common

origin. For instance, financial consultants may base their recommendations on the same dataset,

leading to correlations among their recommendations. If we know that a common origin is the

only possible channel generating the correlation among information sources, does this additional

knowledge help restrict the presumed set of correlations? In other words, what types of correla-

tion structures can be rationalized by sharing a common origin?

Formally, we say a joint experiment P ∈ J (P1, ..., Pm) is rationalizable by a common origin

if there exists Q : Θ→ ∆X and a collection, {γj : X → ∆(Yj)}j, such that

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ).

The interpretation is that Q is the common but unknown origin, and the experiments P1, ..., Pj

are generated by independent garblings of signals from Q.

We have the following straightforward observation.

Observation. Every P ∈ J (P1, ..., Pm) is rationalizable by a common origin.

To see why, note that we can let the common source Q be P itself, and the garblings γj be the

deterministic functions that project each vector y1, ..., ym onto yj. Therefore, sharing a common

origin does not exclude any possible correlation.

7.1.2 Partial Knowledge of Correlations

In certain situations, an agent may understand the correlation among some information sources,

even if she does not comprehend all of them. For example, in medical diagnoses, older tech-

nologies such as X-rays and MRI have well-understood correlations. On the other hand, newer

technologies, such as genetic sequencing, may have correlations with these traditional tests that

are not yet fully understood.

In the context of our model, such knowledge can be modeled as imposing additional con-

straints on the set of conceived joint experiments J (P1, ..., Pm). A simple case in which our

results extend in a straightforward manner is the following: Suppose that there is a partition,

Π = {S1, . . . , Sk}, of {1, 2, . . . ,m} such that for all S ∈ Π, the agent knows that joint distribution

over signals in S is given by: ∑
y−S

P (yS, y−S|θ) = PS(yS|θ).
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Then the set of conceived information structures is given by:P ∈ J (P1, . . . , Pm) :
∑
y−S

P (yS, y−S|θ) = PS(yS|θ), ∀θ, S ∈ Π, yS ∈ YS

 .

But note that we could treat each joint experiment, PS1 , . . . , PSk , as a separate marginal experi-

ment and use our previous analysis.

However, our analysis does not immediately extend to other, more complex situations. In

particular, when the knowledge on the correlations spans across non-disjoint subsets, the set

of possible joint experiments cannot be treated by replacing a subset of experiments with a

single experiment, and our existing results no longer apply. To illustrate, suppose there are

three information sources, {P1, P2, P3}, and that the agent knows that P1 and P2 are correlated

according to P12 : Θ → ∆(Y1 × Y2), and that P2 and P3 are correlated according to P23 : Θ →
∆(Y2 × Y3). The set of feasible joint experiments would beP : Θ→ ∆(Y1 × Y2 × Y3)

∣∣∣∣∣∣∣
∑
y3

P (y1, y2, y3|θ) = P12(y1, y2|θ), ∀θ, y1, y2∑
y1

P (y1, y2, y3|θ) = P23(y2, y3|θ),∀θ, y2, y3

 .

An interesting direction for future research would be to consider general restrictions on the set

of correlation structures derived from causality diagrams (see Pearl (2009) and Spiegler (2016)).

7.2 Ambiguity about Marginals

Our model so far assumes that the agent understands each information source precisely; that

is, she knows Pj for j = 1, ...,m. In this section, we extend our model to allow for additional

ambiguity about the marginal information sources.

Let Pj denote the set of possible marginal experiments for information source j = 1, ...,m.

Let all Pj ∈ Pj have the same finite signal space Yj. In addition, each Pj is assumed to be

convex. That is, if Pj : Θ→ ∆(Yj) and P ′j : Θ→ ∆(Yj) are both in Pj, then for any λ ∈ (0, 1),

Qλ : Θ→ ∆(Yj) defined as θ 7→ λPj(·|θ) + (1− λ)P ′j(·|θ) is also in Pj.
The agent conceives of the following set of joint experiments:

J (P1, ...,Pm) =

{
P : Θ→ ∆(Y) : ∃Pj ∈ Pj,

∑
−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

}
.

The agent’s decision problem is similarly defined:

V (P1, . . . ,Pm) := max
σ:Y→∆(A)

min
P∈J (P1,...,Pm)

∑
θ∈Θ

∑
y∈Y

P (y|θ)u(θ, σ(y)).
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We show that the prediction in Theorem 1 is robust to this additional layer of ambiguity.

Proposition 1. For all (A, u) with |A| = |Θ| = 2,

V (P1, . . . ,Pm) = max
j=1,...,m

V (Pj).

Proof. See Appendix B.3.

7.3 Aggregating Experts’ opinions

In certain instances, an agent may not have the expertise to process raw information sources.

Instead, she may rely on experts who understand the information sources to offer their opinions,

such as in the form of beliefs (e.g., doctors offering beliefs on the likelihood of a successful surgery)

or action recommendations (e.g., financial consultants providing investment recommendations).

Reporting beliefs and offering action recommendations can both be viewed as garblings of the

original, raw information sources. For any given information source Pj : Θ→ ∆(Yj), we call the

induced belief information structure, denoted by BPj : Θ → ∆(Θ), as the information structure

derived by garbling each signal into the corresponding induced beliefs. In addition, we call the

induced recommendation information structure, denoted by RPj : Θ → ∆A, as the information

structure derived by a garbling σ∗j , given by an optimal strategy:

σ∗j ∈ argmax
σj :Yj→A

∑
θ,yj

Pj(yj|θ)u(θ, σj(yj)).

Note that, in contrast to the belief information structure, the recommendation information struc-

ture depends on the decision problem.

When the agent has access to only a single source of information, garbling information through

reporting beliefs or action recommendations does not hurt the agent, that is, V (Pj) = V (BPj) =

V (RPj) for any j. This is because beliefs and action recommendations already contain all the

information needed to make an optimal decision.

When multiple information sources are available, garbling information by reporting only

beliefs or recommendations could potentially hurt payoffs because some of the lost information,

which is not useful on its own, could become valuable when combined with other sources. This

begs the question of whether the agent could still achieve the same value as if she had access to

the raw information sources. In other words, does

V (P1, ..., Pm) = V (BP1 , ..., BPm) = V (RP1 , ..., RPm)

hold when m > 1?
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First, it is indeed the case that V (P1, ..., Pm) = V (BP1 , ..., BPm): since Pj is Blackwell equiv-

alent to BPj for all j, Lemma 2 implies the values V (P1, ..., Pm) and V (BP1 , ..., BPm) must be

equal. The relationship between V (RP1 , ..., RPm) and V (P1, ..., Pm) is more interesting: when

|Θ| = 2, these values coincide, but in general, we could have V (RP1 , ..., RPm) < V (P1, ..., Pm).

Proposition 2. When |Θ| = 2, for any (A, u),

V (P1, ..., Pm) = V (RP1 , ..., RPm).

Proof. See Appendix B.4.

When there are three or more states, the recommendation information structure could gen-

erate a strictly lower value than the raw information structure. This can be seen by revisiting

Example 2. Recall that in the example, under both PX and PY , a = 1 is the unique optimal

action to any signal realization. Therefore, both RPX and RPY are uninformative experiments,

and so V (RPX , RPY ) = 1−0.9+1 = 1.1. By contrast, the agent obtains perfect information when

observing the raw information structures, and thus V (PX , PY ) = 1 + 0 + 1 = 2 > V (RPX , RPY ).

7.4 Perfect News

Thus far, we have made no assumptions about the marginal experiments. In this section, we

study a specific parametric class: perfect news signals. We say that P with signal space Y =

{yθ : θ ∈ Θ} ∪ {y∅} is a perfect news signal if for all θ ∈ Θ, P (yθ′ | θ) = 0 for all θ′ 6= θ. In

words, a perfect news signal either discloses a state perfectly or sends a null message. When all

information sources are perfect news signals, then the characterization of the robustly optimal

value simplifies substantially.

Proposition 3. Suppose that P1, . . . , Pm are all perfect news signal structures. For each θ, let

P ∗θ ∈ arg max {P ∗1 (yθ | θ), . . . , P ∗m(yθ | θ)} .

Let µ̂ be such that

∑
θ′∈Θ

µ0(θ′)P ∗θ′(yθ′ | θ′)δθ′ +

(
1−

∑
θ′∈Θ

µ0(θ′)P ∗θ′(yθ′ | θ′)

)
µ̂ = µ0.

Then

V (P1, . . . , Pm) = V
(
{P ∗θ }θ∈Θ

)
=

(
1−

∑
θ′∈Θ

µ0(θ′)P ∗θ′(yθ′ | θ′)

)
v (µ̂) .

30



The above proposition tells us that only those information sources that maximize the arrival

rate of perfect news in each state are used under the robustly optimal strategy. Notice that,

unlike in Sections 4 and 5, this result holds independently of the decision problem.

Proof. See Appendix B.5.

8 Conclusion

Our findings have both normative and positive implications.

In a normative sense, there are settings in which decisions have to be made in highly uncertain

environments, where correlations between information sources are hard to ascertain, and worst-

case performance is of primary concern. Examples include the design of artificial intelligence and

robotic agents, as well as the formulation of public guidelines. Our results can help guide such

decision-makers on how to construct robustly optimal strategies from best-source strategies.

In a positive sense, our work offers an alternative rationale for information neglect, with

implications that differ from existing explanations. For example, in models of rational inattention

(see Maćkowiak, Matějka, and Wiederholt (2023) for a survey), higher stakes lead agents to

acquire and use more information. In contrast, in our model, multiplying the utility function by

any constant does not alter the set of information sources attended to. This distinction helps

account for why information is ignored even in high-stakes decision problems.20

20For example, Olver et al. (2020) found that only 16.1% of patients sought a second opinion about their cancer
treatment.
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A Appendix

A.1 Proof of Lemma 2

Proof. It suffices to show that for any Q ∈ D(P1, ..., Pm), there exists P ∈ J (P1, ..., Pm) such

that P is Blackwell dominated by Q.

Take any Q ∈ D(P1, ..., Pm) and let X be the signal space of Q. By Blackwell’s Theorem,

there exist γj : X → ∆Yj such that for each j,

Pj(yj|θ) =
∑
x

γj(yj|x)Q(x|θ).

Define the following joint Blackwell experiment P : Θ→ ∆(Y1 × ...× Ym):

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ).

Clearly, P ∈ J (P1, ..., Pm) because
∑

y−j
P (y1, ..., ym|θ) =

∑
x γj(yj|x)Q(x|θ) = Pj(yj|θ). More-

over,
∏m

j=1 γj(yj|x) defines a garbling, so P is Blackwell Dominated by Q.

A.2 Proof of Lemma 3

Proof. To reduce notation, let’s write EP [u`(θ, σ`)] =
∑

θ,y u`(θ, σ`(y))P (y|θ). Since σ = (σ`)
k
`=1

is a feasible strategy,

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
≥ min

P∈J (P1,...,Pm)

k∑
`=1

EP [u`(θ, σ`)]

≥
k∑
`=1

min
P∈J (P1,...,Pm)

EP [u`(θ, σ`)]

=
k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)).
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Moreover, by Theorem 1 and Corollary 1,

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)) =
k∑
`=1

V (P (P1, ..., Pm); (A`, u`))

= V

(
P (P1, . . . , Pm);

k⊕
`=1

(A`, u`)

)

≥ V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
.

Together, these inequalities prove our claim that

V

(
P1, . . . , Pm;

k⊕
`=1

(A`, u`)

)
=

k∑
`=1

max
j=1,...,m

V (Pj; (A`, u`))

and that σ is a robustly optimal strategy.

A.3 Proof of Lemma 4

Proof. Consider the binary decomposition
⊕n−1

`=1 (A`, u`). We prove that for any δ ∈ {0, 1}n−1,∑n−1
`=1 δ`u`(·, 1) ∈ H(A, u).

Suppose, by way of contradiction, that there exists δ ∈ {0, 1}n−1 for which u∗ :=
∑n−1

`=1 δ`u`(·, 1) /∈
H(A, u). Since H(A, u) is convex and closed, we can strictly separate it from the singleton

u∗(Corollary 11.4.2 of Rockafellar (1970)), i.e. there exists λ ∈ R2 \ {(0, 0)} such that

λ · u∗ > sup
v∈H(A,u)

λ · v. (6)

Note that λ ≥ 0 since otherwise supv∈H(A,u) λ · v = +∞.

From the ordering of the actions and the binary decomposition, u`(θ2, 1)/u`(θ1, 1) is decreasing

in `. Therefore, for any `′ > `,

λ · u`(·, 1) ≤ 0 =⇒ λ · u`′(·, 1) ≤ 0.

So there exists `∗ such that λ · u`(·, 1) > 0 for ` < `∗ and λ · u`(·, 1) ≤ 0 for ` ≥ `∗.

Thus

max
δ′∈{0,1}n−1

n−1∑
`=1

λ · δ′`u`(·, 1)
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is solved by choosing δ′` = 1 for ` < `∗ and δ′` = 0 for ` ≥ `∗. Hence

λ · u(·, a`∗) = λ ·
`∗−1∑
`=1

u`(·, 1) ≥ λ ·
n−1∑
`=1

δ`u`(·, 1) = λ · u∗.

But u(·, a`∗) ∈ H(A, u), contradicting (6).

A.4 Proof of Theorem 2

Proof. From Lemma 4, (A, u) is equivalent to
⊕n−1

`=1 (A`, u`), so

V (P1, ..., Pm; (A, u)) = V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
=

n−1∑
`=1

max
j=1,...,m

V (Pj; (A`, u`)),

where the second equality follows from Lemma 3. This establishes the first statement of the

theorem.

By the definition of dominating maps, u(·, σ∗f (y)) ≥
∑n−1

`=1 u`(·, σ`(y)) for each y. For any

P ∈ J (P1, ..., Pm),

EP
[
u(θ, σ∗f (y))

]
≥ EP

[
n−1∑
`=1

u`(θ, σ`(y))

]

= V

(
P1, ..., Pm;

n−1⊕
`=1

(A`, u`)

)
= V (P1, ..., Pm; (A, u))

where the second line follows from Lemma 3 and the third line follows from Lemma 4. So σ∗f is

a robustly optimal strategy.
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A.5 Proof of Theorem 3

A.5.1 Posterior Polytopes

Let �MPS denote the mean-preserving spread order on posterior distributions. For any exper-

iment P , define Ev(P ) = {τ ∈ ∆(∆Θ) | τ �MPS τ
P and supp(τ) ⊆ Ev} as the set of posterior

distributions that are mean-preserving spreads of τP and whose supports are contained in the set

of extremal beliefs Ev. This set is non-empty because it always contains the posterior distribution

induced by a perfectly informative experiment.

Note that Ev(P ) resides in a |Kv|-dimensional space, since by the martingale constraint, the

probabilities that a posterior distribution assigns to the |Kv| nondegenerate extremal beliefs pin

down the probabilities assigned to the degenerate extremal beliefs.21 In addition, because the

mean-preserving spread constraints are linear, Ev(P ) is a |Kv|-dimensional polytope. Hence, we

call Ev(P ) the posterior polytope induced by experiment P . We will sometimes use the vector

notation τ ∈ R|Kv |+ to denote a typical element in Ev(P ), whose components are probabilities

assigned to the nondegenerate extremal beliefs.

We first present a lemma that allows us to simplify Nature’s problem into choosing elements

in the intersection of the posterior polytopes induced by the marginal experiments.

Lemma 5.

V (P1, ..., Pm; v) = min
τ�MPS τP1

,...,τPm

∫
v(µ)τ(dµ) = min

τ∈∩mj=1Ev(Pj)

∑
µ∈Ev

τ(µ)v(µ).

Proof. From Eq. (5), we have V (P1, ..., Pm; v) = minP∈J (P1,...,Pm)

∫
v(µ)τP (dµ). By Lemma 2,

Nature’s problem can be relaxed to choosing an experiment that Blackwell dominates all marginal

experiments; that is, V (P1, ..., Pm; v) = minP∈D(P1,...,Pm)

∫
v(µ)τP (dµ). A posterior distribution

can be induced by a Blackwell experiment that dominates all marginals if and only if it is a mean-

preserving spread of the posterior distributions induced by each marginal experiment (Blackwell,

1953). This yields the first equality in the lemma.

To see the second equality, clearly

min
τ�MPS τP1

,...,τPm

∫
v(µ)τ(dµ) ≤ min

τ∈∩mj=1Ev(Pj)

∑
µ∈Ev

τ(µ)v(µ).

To establish the reverse inequality, consider any τ %MPS τP1 , . . . , τPm . Lemma 7 implies that any

posterior µ /∈ Ev can be split into nearby extremal beliefs without changing the value. Hence,

21Formally, for any posterior distribution τ supported on Ev with a mean µ0, we must have
∑
µ∈Kv

τ(µ) ≤ 1

and τ(δθ) = µ0(θ) −
∑
µ∈Kv

τ(µ)µ(θ) for all θ. Conversely, for any t ∈ [0, 1]Kv such that
∑
µ∈Kv

t(µ) ≤ 1,
by letting τ(µ) = t(µ) for µ ∈ Kv and τ(δθ) = µ0(θ) −

∑
µ∈Kv

t(µ)µ(θ) for all θ, τ is a well-defined posterior
distribution.
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there exists τ̃ %MPS τ with τ̃ ∈ ∆(Ev) such that

∑
µ∈Ev

v(µ)τ̃(µ) =

∫
v(µ)τ(dµ).

Moreover by transitivity, τ̃ %MPS τP1 , . . . , τPm and so, τ̃ ∈
⋂m
j=1 Ev(Pj). Thus, the reverse

inequality follows.

Lemma 6. Let V = {(µ,w) ∈ epi(v) : w ≤ 0, µ ∈ ∆(Θ)}. Then for every (µ,w) ∈ ext(V ),

w = v(µ) and µ ∈ Ev.

Proof. The first claim is obvious. For the second claim, if µ ∈ δθ for some θ ∈ Θ, we are done.

So let us assume that µ 6= δθ.

In this case, note that w < 0. Otherwise, (µ, 0) can be represented as a convex combina-

tion of {(δθ, v(δθ))}θ∈Θ, which contradicts the assumption that (µ,w) ∈ ext(V ). Now consider

(µ1, w1), (µ2, w2) ∈ epi(v) and some α ∈ (0, 1) such that

α(µ1, w1) + (1− α)(µ2, w2) = (µ,w).

Letting µi(β) = βµi + (1 − β)µ and wi(β) = βwi + (1 − β)w, we have for any β ∈ (0, 1),

(µi(β), wi(β)) ∈ epi(v) and

α
(
µ1(β), w1(β)

)
+ (1− α)

(
µ2(β), w2(β)

)
= (µ,w).

Moreover, for β sufficiently small, wi(β) < 0, and so (µi(β, wi(β)) ∈ V for each i = 1, 2. Because

(µ,w) ∈ ext(V ), (µ1(β), w1(β)) = (µ2(β), w2(β)). This however, implies that (µ1, w1) = (µ2, w2).

Hence (µ,w) is an extreme point of epi(v) and therefore, µ ∈ Ev.

Lemma 7 (Splitting Lemma). For every τ , there exists some τ̃ %MPS τ such that τ̃ ∈ ∆(Ev)

with ∑
µ∈Ev

v(µ)τ̃(µ) =

∫
v(µ)τ(dµ).

Proof. Consider any µ ∈ ∆(Θ). Since V is convex and compact, there exists a finite collection,

(µ1, w1), . . . , (µk, wk) ∈ ext(V ) and some λ1, . . . , λk ∈ [0, 1] with
∑k

`=1 λ` = 1 such that

(µ, v(µ)) =
k∑
`=1

λ`(µ`, w`).

By Lemma 6, µ` ∈ Ev and w` = v(µ`). Hence, for every µ ∈ ∆(Θ), we have shown the existence

of λ(· | µ) ∈ ∆(Ev) such that (µ, v(µ)) =
∑

ν∈Ev γ(ν | µ)(ν, v(ν)).
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Now define τ̃ ∈ ∆(Ev) as τ̃(ν) =
∫
γ(ν | µ)τ(dµ). Clearly, τ̃ %MPS τ and

∫
v(ν)τ̃(dν) =

∫ (∑
ν∈Ev

v(ν)γ(ν | µ)

)
τ(dµ) =

∫
v(µ)τ(dµ).

A.5.2 Support Functions

For any convex compact set S ⊆ RKv
+ , we define

hS : RKv
− → R

v 7→ min
τ∈S

τ · v
(7)

as the support function of S.22

The next lemma shows that for any collection of convex sets {Sj}mj=1, the support function

of their intersection, h∩mj=1Sj
(λ), can be characterized by the concavification of the pointwise

maximum of the support functions of Sj.

Lemma 8. Suppose {Sj}mj=1 is a collection of non-empty, compact, convex sets in RKv
+ such that

for any sj ∈ Sj (for j = 1, ...,m), their meet ∧mj=1sj lies in ∩jSj. Then for any v ∈ RKv
− ,

h∩mj=1Sj
(v) = conc(max{hS1 , ..., hSm})(v).

Proof. To simplify notation, let us denote H(·) = max {hS1(·), . . . , hSm(·)}. Clearly, h∩mj=1Sj
(·)

is concave as it is the minimum of linear functions. In addition, h∩mj=1Sj
(·) ≥ H(·), because any

solution to minτ∈∩mj=1Sj
τ · v is feasible in minτ∈Sj τ · v. Therefore, h∩mj=1Sj

(·) ≥ conc(H)(·).
For the reverse inequality, recall that conc(H)(·) is the point-wise infimum of all affine func-

tions, g, that dominate H pointwise, i.e. g(v) ≥ H(v) for all v ∈ RKv
− . Thus, it suffices to show

that for any such function, we also have g(·) ≥ h∩mj=1Sj
(·).

Consider any affine function g(v) = λ · v + c that dominates H pointwise. Note that for any

β > 0, v ∈ RKv
− and j, 0 ≤ g(βv)−hSj (βv)

β
= (λ · v − hSj(v)) + c

β
. Taking β → 0, we first note that

c ≥ 0. Moreover, taking β →∞, we have λ · v ≥ hSj(v). To summarize, we have shown that for

all v ∈ RKv
− :

g(v) ≥ λ · v ≥ hSj(v) = hS−j (v), (8)

where S−j ≡ Sj − RKv
+ . Since λ · v ≥ hS−j (v) for all v ∈ RKv

− , we must have λ ∈ S−j . To see why,

suppose toward a contradiction that λ /∈ S−j . By the separating hyperplane theorem, there must

22Recall that we have normalized the value functions to be non-positive, so the domain here is restricted to the
negative quadrant.
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exist r ∈ RKv
− and α ∈ R such that λ · r < α < x · r for all x ∈ S−j , which implies λ · r < hS−j (r),

a contradiction.

Hence, we have

g(v) ≥ λ · v ≥ inf
s∈∩mj=1S

−
j

s · v = h∩mj=1Sj
(v)

where the last equality holds because, by assumption, for any s ∈ ∩mj=1S
−
j , there exists sj ∈ Sj

such that s ≤ sj for j = 1, ...,m; therefore, s ≤ ∧jsj ∈ ∩jSj, which implies that infs∈∩mj=1S
−
j
s·v =

mins∈∩mj=1Sj
s · v = h∩mj=1Sj

(v). This concludes the proof.

We will apply Lemma 8 to ∩mj=1Ev(Pj), and the following lemma ensures that {Ev(Pj)}mj=1

satisfies the desired properties.

Lemma 9. For any τ j ∈ Ev(Pj) (for j = 1, ...,m), their meet ∧mj=1τ j lies in ∩mj=1Ev(Pj).

Proof. Note that if τ j ∈ Ev(Pj), and τ ′ satisfies 0 ≤ τ ′ ≤ τ j, then τ ′ ∈ Ev(Pj). This is

because any probability mass on nondegenerate extremal beliefs can be split into degenerate

extremal beliefs, which yields a mean-preserving spread that retains its support on Ev. Since

0 ≤ ∧mj=1τ j ≤ τ j for all j, it follows that ∧mj=1τ j ∈ ∩mj=1Ev(Pj).

The next lemma characterizes W (P ;v) using support functions.

Lemma 10. For any P and v ∈ RKv
− ,

W (P ;v) = hEv(P )(v).

Proof. Recall that W (P ;v) = V (P ; conv(v)). By Lemma 5,

W (P ;v) = V (P ; conv(v)) = min
τ∈Ev(P )

∑
µ∈Ev

conv(v)(µ)τ (µ).

Now let Êv = {µ ∈ Ev|conv(v)(µ) = v(µ)}, which is non-empty as it always contains {δθ}θ∈Θ.

Let Êv(P ) = {τ ∈ ∆(∆Θ)|τ �MPS τ
P and supp(τ) ⊆ Êv}.

We will establish the following:

min
τ∈Ev(P )

∑
µ∈Ev

conv(v)(µ)τ (µ) = min
τ∈Êv(P )

∑
µ∈Êv

conv(v)(µ)τ (µ)

= min
τ∈Êv(P )

∑
µ∈Êv

v(µ)τ (µ)

≥ min
τ∈Ev(P )

∑
µ∈Ev

v(µ)τ (µ)

≥ min
τ∈Ev(P )

∑
µ∈Ev

conv(v)(µ)τ (µ);
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hence, all hold with equality. The first equality follows from the fact that any µ such that

v(µ) > conv(v)(µ) can be split into µi ∈ Êv without changing the value. The second equality

is due to conv(v)(µ) = v(µ) for all µ ∈ Êv. The second to last inequality holds because

Êv(P ) ⊆ Ev(P ), and the last inequality holds because conv(v) ≤ v.

Therefore, W (P ;v) = minτ∈Ev(P )

∑
µ∈Ev v(µ)τ (µ) = hEv(P )(v), which concludes the proof.

A.5.3 Robustly Optimal Value

By Lemma 5, Lemma 8, Lemma 9, and Lemma 10, we have

V (P1, ..., Pm; v) = min
τ∈∩mj=1Ev(Pj)

τ · vv

= h∩mj=1Ev(Pj)(vv)

= conc(max{hEv(P1), ..., hEv(Pm)})(vv)

= conc(max{W (P1; ·), ...,W (Pm; ·)})(vv)

and Theorem 3 follows.

A.6 Proof of Corollary 4

We first establish that (A, u) dominates
⊕m

j=1(Aj, uj). Suppose, toward a contradiction, that

H(
⊕m

j=1(Aj, uj)) * H(A, u). Then there is some r ∈ H(
⊕m

j=1(Aj, uj)) with r /∈ H(A, u). By

the separating hyperplane theorem, there exists h ∈ R|Θ|+ /{0} such that h · r > h · x for all

x ∈ H(A, u). Normalizing h so that h ∈ ∆(Θ), it follows that there exists αj ∈ Aj, j = 1, ...,m

such that ∑
θ

h(θ)
∑
j

uj(θ, αj) >
∑
θ

h(θ)u(θ, α) for all α ∈ ∆A.

This means that
∑m

j=1 λjconv(vj)(h) > v(h) = conv(vv)(h) = conv(
∑m

j=1 λ
∗
jv
∗
j)(h) ≥

∑m
j=1 λjconv(v∗j)(h),

a contradiction.

Next, we show that for any dominating map, f :
⊕m

j=1(Aj, uj) → ∆(A), the corresponding

strategy σ∗f (y1, . . . , ym) = f(σ∗1(y1), . . . , σ∗m(ym)) is a robustly optimal strategy. For any P ∈
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J (P1, ..., Pm), the agent’s expected payoff when playing σ∗f is

∑
θ

∑
y1,...,ym

P (y1, ..., ym|θ)u(θ, σ∗f (y1, ..., ym)) ≥
∑
θ

∑
y1,...,ym

P (y1, ..., ym|θ)

[
m∑
j=1

uj(θ, σ
∗
j (yj))

]

=
m∑
j=1

∑
yj

Pj(yj|θ)uj(θ, σ∗j (yj))

=
m∑
j=1

λ∗jW (Pj;v
∗
j)

= V (P1, . . . , Pm;vv).

Therefore, σ∗f is a robustly optimal strategy.

A.7 Proof of Corollary 5

Let f(·) := max{hEv(P1), ..., hEv(Pm)}(·). By Theorem 3,

V (P1, ..., Pm; v) = conc(f)(vv) = max{r|(vv, r) ∈ co(G(f))},

where G(f) = {(v, f(v))|v ∈ RKv
− } is the graph of f .23 Therefore, there exists λi ≥ 0,

∑
i λi = 1,

and vi ∈ RKv
− such that

∑
i λivi = vv and V (P1, ..., Pm; v) =

∑
i λif(vi).

Let ||v|| = |vv · 1| = −vv · 1 denote the L1 norm of a vector v ∈ RKv
− , and V = {v ∈

RKv
− | ||v|| = ||vv||} denote the set of vectors that have the same norm as vv. Let λ̂i := λi

||vi||
||vv ||

and v̂i := ||vv ||
||vi||vi. Note that f is a positive homogeneous function; that is, f(αv) = αf(v)

for any α ≥ 0 and v ∈ RKv
− . Therefore, conc(f)(vv) =

∑
i λif(vi) =

∑
i λi

||vi||
||vv ||f( ||vv ||||vi||vi) =∑

i λ̂if(v̂i). Since v̂i ∈ V and
∑

i λ̂i = 1, it follows that (vv, conc(f)(vv)) is in the convex hull

of GV (f) := {(v, f(v))|v ∈ V }. Therefore, the concavification with domain on V obtains the

same value; that is, conc(f)(vv) = max{r|(vv, r) ∈ co(GV (f))}. Since (vv, conc(f)(vv)) lies on

the boundary of co(GV (f)), there exists a supporting hyperplane crossing (vv, conc(f)(vv)). In

addition, (v̂i, f(v̂i)) must all lie on this supporting hyperplane. Since the supporting hyperplane

is of dimension |Kv|−1, by Carathéodory’s theorem, there exists an index set I and some λ̃i ≥ 0,∑
i∈I λ̃i such that |I| ≤ |Kv| and (v̂v, conc(f)(v̂v)) =

∑
i∈I λ̃i(v̂i, f(v̂i)).

For each v̂i, there exists a j such that f(v̂i) = hEv(Pj)(v̂i); we select such a j and denote

it by j(i). Let J = {j|j = j(i) for some i}. Note that |J | ≤ |Kv|, and that V ({Pj}j∈J ; v) =

conc(max{hEv(Pj); j ∈ J}) ≥
∑

i∈I λ̃ihEv(Pj(i))(v̂i) =
∑

i∈I λ̃if(v̂i) = conc(f)(vv) = V (P1, ..., Pm; v),

and the corollary follows.

23We can take max instead of sup in the definition because f has a closed graph.
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A.8 Proof of Corollary 6

If V (P`; v) ≤ maxj 6=`;v V (Pj; v) for all v, we have

max{W (P1; ·), ...,W (Pm; ·))} = max{W (P1; ·), ...,W (P`−1; ·),W (P`+1; ·)...,W (Pm; ·))}.

The corollary then follows immediately from Theorem 3.

A.9 Proof of Corollary 7

Before proving the result, we prove a lemma connecting the best-response to a signal in the

original problem with the best responses in the decomposed problems.

Lemma 11. Suppose that ai = a∗j(yj;A, u). Then, using only information source Pj, a best

response to signal yj for the decomposed decision problem (A`, u`) is a` = 1 for ` = 1, . . . , i − 1

and a` = 0 for ` = i, . . . , n− 1.

Proof. Let µ ∈ ∆(Θ) be the belief that comes from observing yj from Pj, so ai ∈ argmaxa∈A
∑

θ µ(θ)u(θ, a).

By Lemma 13 in Appendix B.4, for ` = 1, . . . , i−1, we have
∑

θ µ(θ)u(θ, a`+1) ≥
∑

θ µ(θ)u(θ, a`),

whereas for ` = i, . . . , n− 1, we have
∑

θ µ(θ)u(θ, a`) ≥
∑

θ µ(θ)u(θ, a`+1). This gives the result

by the definition of (A`, u`).

In particular, using the belief order, it follows that if a∗j(yj;A, u) � ai, then a∗j(yj;A`, u`) = 1

for ` = 0, . . . , i− 1; likewise, if ak � a∗j(yj;A, u), then a∗j(yj;A`, u`) = 0 for ` = k, . . . , n− 1.

Now let y be a signal realization for all information sources and

ai = min
j
a∗j(yj;A, u) ak = max

j
a∗j(yj;A, u),

where the minimum and maximum are with respect to the belief order. Then it follows that, for

every j,

a∗j(yj;A`, u`) =


1 if ` ≤ i− 1

0 or 1 if i ≤ ` ≤ k − 1

0 if k ≤ `.

Moreover, if a∗j(yj;A`, u`) = a` ∈ {0, 1} for all j, then there must be a pure best-source strategy

σ` for (A`, u`) with σ`(y) = a`. Hence there are best-source strategies σ` with σ`(y) = 1 for

` ≤ i− 1 and σ`(y) = 0 for k ≤ `.

Now let f :
∏n−1

`=1 A` → ∆(A) be a dominating map that always assigns strategies that are not

weakly dominated by any other mixed strategy. By Theorem 2, σ∗f (y) := f(σ1(y), . . . , σn−1(y))
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is a robustly optimal strategy for (A, u). Letting a` = σ`(y), we have

u (θ, f [σ1(y), . . . , σn−1(y)]) =
i−1∑
`=1

u`(θ, 1) +
k−1∑
`=i

u`(θ, σ`(y)) +
n−1∑
`=k

u`(θ, 0)

=
i−1∑
`=1

[u(θ, a`+1)− u(θ, a`)] +
k−1∑
`=i

u`(θ, σ`(y)) + 0

= u(θ, ai) +
k−1∑
`=i

u`(θ, σ`(y)).

Notice that, given our normalization, u`(θ1, 1) > 0 and u`(θ2, 1) < 0 for every `,. Therefore, the

equality above implies

u
(
θ1, f

(
σ1(y), . . . , σn−1(y)

))
≥ u(θ1, ai)

and

u
(
θ2, f

(
σ1(y), . . . , σn−1(y)

))
≥ u(θ2, ai) +

k−1∑
`=i

u`(θ2, 1) = u(θ2, ak).

We now prove another lemma.

Lemma 12. Let α ∈ ∆(A) be not weakly dominated by any other mixed strategy. If u(θ1, α) >

u(θ1, ai) then α � ai. If u(θ2, α) > u(θ2, ak), then α � ak.

Proof. By definition of the belief order, showing that α � ai is equivalent to showing that,

whenever α is optimal for a belief η, ai is optimal for a belief µ and µ(θ1) > η(θ1) then α is

optimal for µ and ai is optimal for η. So let ai be optimal for µ and α be optimal for η (since

both ai and α are not weakly dominated, they must be a best response to some belief). Then

we have

µ(θ1)[u(θ1, ai)− u(θ1, α)] + (1− µ(θ1))[u(θ2, ai)− u(θ2, α)] ≥ 0

η(θ1)[u(θ1, α)− u(θ1, ai)] + (1− η(θ1))[u(θ2, α)− u(θ2, ai)] ≥ 0.

Combining these inequalities, we get

(η(θ1)− µ(θ1))[u(θ1, α)− u(θ1, ai)] + (µ(θ1)− η(θ1))[u(θ2, α)− u(θ2, ai)] ≥ 0.

Since ai is not weakly dominated and u(θ1, α) > u(θ1, ai), we have that u(θ2, α) < u(θ2, ai). For

the inequality above to hold, it is necessary that µ(θ1) ≤ η(θ1). This means that the condition

µ(θ1) > η(θ1) never holds when ai is optimal for µ and α is optimal for η, so α � ai.

The proof that “if u(θ2, α) > u(θ2, ak), then α � ak” is analogous.
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Now fix a signal profile y and let α = f
(
σ1(y), . . . , σn−1(y)

)
. Then α is not weakly dominated

and u (θ1, α) ≥ u(θ1, ai). If this inequality holds with equality, it must hold with equality for θ2

as well, otherwise either ai or α would be weakly dominated (in that case, α � ai holds trivially).

In the case where the inequality holds strictly, we can use Lemma 12 to conclude that α � ai.

Similarly, since u(θ2, α) ≥ u(θ2, ak), we can conclude that α � ak. Since we can do this for every

y, Corollary 7 follows.
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B Online Appendix

B.1 Necessity of Randomization

We provide an example that highlights the necessity of mixed actions for robustly optimal strate-

gies. There are two states, Covid (θ = 1) and Flu (θ = 2), and two information sources. These

two information sources are the same as the ones in the introductory example, reproduced below

for the ease of reference.

+ −
Covid 0.9 0.1
Flu 0.5 0.5

Cough

+ −
Covid 0.5 0.5
Flu 0.1 0.9

Fever

We consider the following three-action decision problem: u(·, a1) = (0, 0), u(·, a2) = (3,−2),

u(·, a3) = (7,−8). The corresponding binary decomposition consists of two subproblems with

payoffs u1(·, 1) = (3,−2), u2(·, 1) = (4,−6), as illustrated in Fig. 7.

θ = 2

(0,0) θ = 1

u1(·, 1)

u2(·, 1)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

Figure 7: Binary decomposition of the three-action decision problem

In the binary decomposition, the action (0, 1) corresponds to a payoff vector (4,−6), which is

not dominated by any pure action, but is dominated by a convex combination of a2 and a3. This

means that the construction of robustly optimal strategies in Theorem 2 requires the decision

maker to mix under some signal realization. We will further establish that every robustly optimal

strategy must involve randomization in this example.

In light of Corollary 1, we can derive the robustly optimal value through the Blackwell

supremum of {PCough, PFever}. Fig. 8 geometrically characterizes the induced feasible set of the

Blackwell supremum, P (PCough, PFever). It can be verified that the joint experiment P ∗ given in

Table 7 induces this feasible set, which means P ∗ is the Blackwell supremum.
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λ(·|θ = 2)

(0,0) λ(·|θ = 1)

ΛPCough

ΛPFever

ΛP

(1,1)

(0.1, 0.5)
(0.9, 0.5)

(0.5, 0.9)

Figure 8: Blackwell Supremum of {PCough, PFever}

Covid Fever+ Fever−
Cough+ 0.5 0.4 0.9
Cough− 0 0.1 0.1

0.5 0.5

Flu Fever+ Fever−
Cough+ 0.1 0.4 0.5
Cough− 0 0.5 0.5

0.1 0.9

Table 7: Blackwell Supremum as Joint Experiment

From Eq. (1), any robustly optimal strategy σ∗ must be a best response to P ∗. Therefore,

σ∗(C+, F+) = a3, σ∗(C+, F−) = a2, and σ∗(C−, F−) = a1. Note that σ∗(C−, F+) is not determined

by the best response requirement because it is not in the support of P ∗. A simple calculation

gives us the robustly optimal value V (P ∗) = 1.55.

We will show that σ∗(C−, F+) must be mixed to guarantee such a value. We do so by showing

that if the decision maker plays any of the three pure actions under (C−, F+), there exists a joint

experiment that leads to a value strictly less than 1.55.

If σ(C−, F+) = a1, consider the joint experiment given in Table 8, which yields a value of
1
2
[0.4 ∗ 7 + 0.5 ∗ 3− 0.1 ∗ 8− 0.4 ∗ 2] = 1.35 < 1.55. If σ(C−, F+) = a2, the same joint experiment

yields a value of 1
2
[0.4 ∗ 7 + 0.5 ∗ 3 + 0.1 ∗ 3− 0.1 ∗ 8− 0.4 ∗ 2] = 1.5 < 1.55.

Covid Fever+ Fever−
Cough+ 0.4 0.5 0.9
Cough− 0.1 0 0.1

0.5 0.5

Flu Fever+ Fever−
Cough+ 0.1 0.4 0.5
Cough− 0 0.5 0.5

0.1 0.9

Table 8: Nature’s alternative choice of joint experiment

If σ(C−, F+) = a3, consider the joint experiment given in Table 9, which yields a value of
1
2
[0.5 ∗ 7 + 0.4 ∗ 3− 0.5 ∗ 2− 0.1 ∗ 8] = 1.45 < 1.55.
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Covid Fever+ Fever−
Cough+ 0.5 0.4 0.9
Cough− 0 0.1 0.1

0.5 0.5

Flu Fever+ Fever−
Cough+ 0 0.5 0.5
Cough− 0.1 0.4 0.5

0.1 0.9

Table 9: Nature’s alternative choice of joint experiment 2

B.2 Bounding |Kv| by |Θ| and |A|

Proof. Recall that epi(v) = {(µ,w) ∈ ∆(Θ) × R | w ≥ v(µ)}. Let n = |Θ|. We can represent

epi(v) as a polyhedron in Rn that is the intersection of |A|+ |Θ| halfspaces, as follows:(µ1, . . . , µn−1, w) ∈ Rn

∣∣∣∣∣∣∣
w ≥

∑n−1
i=1 µiρ(θi, a) + (1−

∑n−1
i=1 µi)ρ(θn, a) ∀a ∈ A

µi ≥ 0 i = 1, . . . , n− 1

µ1 + · · ·+ µn−1 6 1

 .

Here, we simply replaced the set ∆(Θ) by its first n − 1 coordinates; the original element µ ∈
∆(Θ) can be recovered by µn = 1 − µ1 − · · · − µn−1, so this change is inconsequential. In this

representation, we have |A| halfspaces corresponding to the constraints w ≥
∑

θ∈Θ µ(θ)ρ(θ, a)

and |Θ| = n constraints corresponding to the description of ∆(Θ).

This polyhedron is unbounded. To bound it, we also intersect epi(v) with an additional

halfspace, creating a bounded polytope B = epi(v)∩{(µ,w) : w ≤ maxθ,a u(θ, a) + 1}, which has

at most |A|+ |Θ|+ 1 facets.

The Upper Bound Theorem (see Theorem 8.23 in Ziegler (2012)) gives an upper bound on

the number of facets that a polytope with a given number of vertices can have. Every polytope

has a dual polytope (see Section 3.4 in Grünbaum (2003)), where each vertex corresponds to a

facet and each facet corresponds to a vertex. Thus, we can apply the Upper Bound Theorem to

the dual of B, which implies B can have at most(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)

number of vertices.

These vertices include {(δi, v(δi))}ni=1 and {(δi,maxθ,a u(θ, a) + 1)}ni=1, which means |Kv| can

be no more than(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)
− 2|Θ|.
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B.3 Proof of Proposition 1

Proof. First observe that the agent’s maxmin value is no more than her minmax value:

V (P1, . . . ,Pm) ≤ min
P∈J (P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))

Now in the minmax problem, Nature’s choice can be split into first choosing each marginal

experiment Pj ∈ Pj, and then choosing a joint experiment P ∈ J (P1, ..., Pm):

= min
Pj∈Pj
j=1,...,m

min
P∈J (P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))

And the value of the inner minmax problem is exactly V (P1, ..., Pm), which equals maxj V (Pj)

from Theorem 1:

= min
Pj∈Pj
j=1,...,m

max
j=1,...,m

V (Pj)

= max
j=1,...,m

V (Pj)

where P j ∈ argminPj∈Pj V (Pj) is a worst experiment among the set Pj if the agent faces this

information source solely. Let j∗ ∈ argmaxj V (Pj), and consider the problem where the decision

maker faces only a single set of marginal experiments Pj∗ :

V (Pj∗) = max
σ:Yj∗→∆(A)

min
Pj∗∈Pj∗

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗ |θ)u(θ, σ(y∗j )).

Since Pj∗ is convex, from the minmax theorem, the value of the problem equals

V (Pj∗) = min
Pj∗∈Pj∗

max
σ:Yj∗→∆(A)

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗|θ)u(θ, σ(y∗j )) = V (Pj∗).

So there exists a best-source strategy, using only signals from the experiment Pj∗ , that guarantees

the robustly optimal value V (Pj∗) = maxj V (Pj) ≥ V (P1, . . . ,Pm).
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B.4 Proof of Proposition 2

Lemma 13 (Single-Peaked Property). Suppose in a binary-state decision problem (A, u), every

action is a unique best response to some belief, and actions are ordered as follows

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Then, for any belief µ ∈ ∆(Θ),

ai ∈ argmax
a∈A

∑
θ

µ(θ)u(θ, a)

implies that for k > j ≥ i, ∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak)

and for k < j ≤ i, ∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak).

Proof. Suppose by contradiction that there exists k > j ≥ i, such that

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) < µ(θ1)u(θ1, ak) + µ(θ2)u(θ2, ak).

Rearranging, we obtain

µ(θ2)[u(θ2, aj)− u(θ2, ak)] < µ(θ1)[u(θ1, ak)− u(θ1, aj)].

Given that u(θ2, aj) − u(θ2, ak) > 0 and u(θ1, ak) − u(θ1, aj) > 0, the inequality above still

holds if we raise µ(θ1) (and consequently lower µ(θ2)). That is, for any µ′ ∈ ∆(Θ) such that

µ′(θ1) ≥ µ(θ1), we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) < µ′(θ1)u(θ1, ak) + µ′(θ2)u(θ2, ak). (9)

Since ai is, by definition, a best response for µ,

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) ≤ µ(θ1)u(θ1, ai) + µ(θ2)u(θ2, ai).

Since u(θ1, aj) ≥ u(θ1, ai) and u(θ2, aj) ≤ u(θ2, ai), for any µ′ ∈ ∆(Θ) such that µ′(θ1) ≤ µ(θ1),

we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) ≤ µ′(θ1)u(θ1, ai) + µ′(θ2)u(θ2, ai) (10)
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The inequalities (9) and (10) together imply that aj is never a unique best response to any belief,

contradicting our assumption.

The case where k < j ≤ i follows from a similar argument.

Lemma 14. Let (A`, u`) be a subproblem in a binary decomposition of (A, u) and let RPj be a

recommendation information structure with respect to (A, u). Then

V (Pj; (A`, u`)) = V (RPj ; (A`, u`)).

Proof. Recall that Pj Blackwell dominates RPj , so V (Pj; (A`, u`)) ≥ V (RPj ; (A`, u`)). We prove

the result by constructing a recommendation information structure R`
Pj

for (A`, u`) and showing

that V (RPj ; (A`, u`)) ≥ V (R`
Pj

; (A`, u`)) = V (Pj; (A`, u`)).

Recall that RPj is defined using a garbling of Pj given by σ∗ : Yj → A that satisfies, for each

yj in the support,

σ∗(yj) ∈ argmax
a∈A

∑
θ

Pj(yj|θ)u(θ, a).

From Lemma 13, if ai ∈ argmaxa∈A
∑

θ Pj(yj|θ)u(θ, a), for all i ≤ ` ≤ n−1,
∑

θ Pj(yj|θ)u(θ, a`) ≥∑
θ Pj(yj|θ)u(θ, a`+1), and for all 2 ≤ ` ≤ i,

∑
θ Pj(yj|θ)u(θ, a`) ≥

∑
θ Pj(yj|θ)u(θ, a`−1). This

means that, if RPj recommends action ai, then 1 ∈ A` is optimal for the subproblems with i 6 `

and 0 ∈ A` is optimal for the subproblems with i > `. Now let γ` : A → {0, 1} be the garbling

defined by

γ`(ai) =

0 if i ≤ `

1 if i > `.

By construction, for each yi in the support,

γ`(σ
∗(yj)) ∈ argmax

a∈A`

∑
θ,yj

Pj(yj|θ)u`(θ, a),

so the experiment R`
Pj

, induced by garbling Pj according to γ`◦σ∗ : Yj → A, is a recommendation

information structure for the decision problem (A`, u`), so V (R`
Pj

; (A`, u`)) = V (Pj; (A`, u`)).

Moreover, by construction, RPj Blackwell dominates R`
Pj

, so V (RPj ; (A`, u`)) ≥ V (R`
Pj

; (A`, u`)).

Proof of Proposition 2. Let
⊕k

`=1(A`, u`) be a binary decomposition of (A, u). From Theorem 2
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and Lemma 14,

V (P1, . . . , Pm; (A, u)) =
k∑
l=1

max
j=1,...,m

V (Pj; (A`, u`))

=
k∑
l=1

max
j=1,...,m

V (RPj ; (A`, u`))

= V (RPj , . . . , RPj ; (A, u)).

B.5 Proof of Proposition 3

Consider the following Blackwell experiment:

P ∗(y | θ) =

P ∗(yθ | θ) if y = yθ,

1− P ∗(yθ | θ) if y = ∅.

First, we will show that P ∗ Blackwell dominates P1, . . . , Pm. To see this, first note that by

construction, for each θ,

P ∗(yθ | θ) ≥ P`(yθ | θ).

Thus, consider the following garbling matrix: for each θ, Q(yθ | yθ) = P`(yθ|θ)
P ∗(yθ|θ)

and Q(∅ | yθ) =

1−Q(yθ | yθ). Then clearly, P` is a Q-garbling of P ∗. Thus, by Blackwell’s theorem, P ∗ Blackwell

dominates P`. Hence, we have:

V (P1, . . . , Pm) ≤ V (P ∗).

Second, it remains to show that for any P ∈ P(P1, . . . , Pm), V (P ) ≥ V (P ∗). To show this,

it suffices to show that τP (δθ) ≥ τP ∗(δθ) for all θ. By construction, τP ∗(δθ) = max`=1,...,m τP`(δθ).

So it suffices to show that τP (δθ) ≥ τP`(δθ) for all `.

First if τP`(δθ) = 0, then the inequality is trivial. So assume that τP`(δθ) > 0. Since P Black-

well dominates P`, there exists some garbling Q` such that P` is a Q`-garbling of P . Therefore,

for every θ′′, θ′,

P`(yθ′′ | θ′) =
∑
y∈Y

Q(yθ′′ | y)P (y | θ′).

First note that if Q(yθ | y) > 0 then P (y | θ′) = 0 for all θ′ 6= θ. Hence, the interim belief after

observing y is δθ. Then letting Yθ := {y : Q(yθ | y) > 0}, we have:∑
y∈Yθ

P (y | θ)µ0(θ) ≥
∑
y∈Yθ

Q(yθ | y)P (y | θ)µ0(θ) = P`(yθ | θ)µ0(θ).
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So, τP (δθ) ≥ τP`(δθ).

B.6 Proof of Uniqueness for Theorem 1

Consider any binary-state binary-action decision problem, denoted by (Abi, ubi). Without loss

of generality, suppose P1 is the unique best marginal information source: V (P1; (Abi, ubi)) >

V (Pj; (Abi, ubi)) for j 6= 1.

B.6.1 Payoff Sets

Recall that as in Section 4.3, any binary-state decision problem (A, u) induces a payoff polyhe-

dron:

H(A, u) = co{u(·, a) : a ∈ A} − R2
+,

which captures the feasible payoff vectors that can be achieved by the decision maker when

allowing for free disposal of utils. Such a polyhedron is upper bounded, convex, closed, and has

a finite number of extreme points.

Definition 9. A non-empty subset D ⊆ R|Θ| is a payoff set if D is upper bounded, convex,

closed, and has a finite number of extreme points.

For any payoff set D, we define the robustly optimal value in a manner similar to that for

decision problems:

W (P1, ..., Pm;D) = max
t:Y→D

min
P∈J (P1,...,Pm)

∑
y

P(y) · t(y)

where P(y) = P (y|·) ∈ R|Θ| denotes the vector corresponding to the probability of y in each

state.

If only a single experiment P : Θ→ ∆(Y ) is considered (m = 1),

W (P ;D) = max
t:Y→D

∑
y

P(y) · t(y).

Note that the value for a payoff set is tightly connected to the value of the decision problem that

induces it. Specifically, we have V (P1, ..., Pm; (A, u)) = W (P1, ..., Pm;H(A, u)).

Similar to V , W also has the property that having access to more experiments can be no

worse than having access to just one experiment.

Lemma 15. For any decision problem D,

W (P1, ..., Pm;D) ≥ W (P1;D)

54



Proof. Suppose t1 : Y1 → D is the solution to W (P1;D). Define t̃ : Y1 × · · · × Ym → D as

t̃(y1, ..., ym) = t1(y1), and we have

W (P1, ..., Pm;D) ≥ min
P∈P(P1,...,Pm)

∑
y

P(y) · t̃(y) =
∑
y1

P1(y1) · t1(y) = W (P1;D).

Another useful property of W is its separability with respect to payoff sets, analogous to the

separability of V with respect to separable decision problems.

Lemma 16. Let C,D ⊆ R2 be two payoff sets, and C +D denote their Minkowski sum. Then

W (P ;C +D) = W (P ;C) +W (P ;D).

Proof. Let t∗C and t∗D be solutions to W (P ;C) and W (P ;C), respectively. Define t : Y → C +D

to be t(y) = t∗C(y) + t∗D(y). Then

W (P ;C +D) ≥
∑
y

P(y) · t(y)

=
∑
y

P(y) · (t∗C(y) + t∗D(y))

=
∑
y

P(y) · t∗C(y) +
∑
y

P(y) · t∗D(y)

= W (P ;C) +W (P ;D).

Conversely, let t∗ be a solution to W (P ;C +D). Then for any y, there exists cy ∈ C and dy ∈ D
such that t∗(y) = cy + dy. Define tC(y) = cy and tD(y) = dy, then

W (P ;C) +W (P ;D) ≥
∑
y

P(y) · tC(y) +
∑
y

P(y) · tD(y)

=
∑
y

P(y) · t∗(y)

= W (P ;C +D).
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B.6.2 Binary-Action Decision Problems

Now we return to the binary action decision problem (Abi, ubi). The payoff polyhedron corre-

sponding to (Abi, ubi) can be represented as intersection of three halfspaces:

H(Abi, ubi) =
⋂

β∈B
(Abi,ubi)

{v ∈ R2 : β · v ≤ kβ}

where B(Abi,ubi) = {e1, e2, β
∗} with e1 = (1, 0), e2 = (0, 1), and β∗ ∈ R2

++ denote the set of normal

vectors, and ke1 = maxa∈A u(θ = 1, a), ke2 = maxa∈A u(θ = 2, a), and kβ∗ ∈ R. This is visualized

in Fig. 9.

The set of normal vectors, B(Abi,ubi), depends on the binary action decision problem, where β∗

is proportional to the belief at which the decision maker is indifferent between the two actions.

Since the decision problem (Abi, ubi) is fixed, for notational simplicity, we will henceforth omit

the dependence of B on (Abi, ubi).

θ = 2

θ = 1

u(·, a2)

u(·, a1)

e2

e1

β∗

H(A, u)

Figure 9: Payoff polyhedron for a binary-state binary-action problem

We next define payoff sets that have the same shape as the H(Abi, ubi).

Definition 10. A payoff set D ⊂ R2 is a B-shape polyhedron if

D =
⋂
β∈B

{v ∈ R2 : β · v ≤ kβ}

for some constants {kβ}β∈B ∈ R.

Note that the constraint β∗ ·v ≤ kβ∗ may be redundant in a B-shape polyhedron, in which case

the polyhedron is an unbounded rectangle. Such a polyhedron can be represented as {v : v ≤ v∗}
for some v∗ ∈ R2 and corresponds to a single-action decision problem. We call such a B-shape

polyhedron trivial.
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Clearly, if D is a trivial B-shape polyhedron, W (P ;D) = W (P ′;D) for any P, P ′. The next

lemma shows that for any non-trivial B-shape polyhedron, the relative value of experiments

under (Abi, ubi) is preserved.

Lemma 17. If D is a non-trivial B−shape polyhedron, then W (P1;D) > maxj 6=1W (Pj;D).

Proof. Any non-trivial B-shape polyhedron D has two extreme points, denoted by ex(D)1 and

ex(D)2. See Fig. 10 for an illustration.

θ = 2

θ = 1

ex(D)2

ex(D)1

e2

e1

β∗

D

Figure 10: Extreme points of a non-trivial B-polyhedron

The two extreme points are defined by two linear equations:(
e1

β∗

)
v =

(
ke1

kβ∗

) (
e2

β∗

)
v =

(
ke2

kβ∗

)
,

with the closed-form solutions ex(D)1 =

(
ke1

kβ∗−β∗1ke1
β∗2

)
and ex(D)2 =

(
kβ∗−β∗2ke2

β∗1

ke2

)
. A useful

observation is that (ex(D)2 − ex(D)1) = (kβ∗ − ke1β∗1 − ke2β∗2)

(
− 1
β∗1
1
β∗2

)
. That is, β∗ determines

the direction of the vector (ex(D)2 − ex(D)1), and the constant terms kβ only affect the scalar

multiplier. Moreover, the multiplier (kβ∗ − ke1β∗1 − ke2β∗2) > 0, because (ke1 , ke2) ∈ int(D) and

kβ∗ = maxv∈D β
∗ · v.

For any B-shape polyhedron D, and any Pj,

W (Pj;D) = max
tj :Yj→D

∑
yj∈Yj

Pj(yj) · tj(yj)

Since the objective function is linear and the extreme points of D are ex(D)1 and ex(D)2, a
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solution to the problem is

t∗j(yj) =


ex(D)1 if Pj(yj) ·

− 1
β∗1

1
β∗2

 ≤ 0

ex(D)2 if Pj(yj) ·

− 1
β∗1

1
β∗2

 > 0.

For each Pj, let Ỹj = {y ∈ Yj : Pj(yj) ·

(
− 1
β∗1
1
β∗2

)
≤ 0}, and we can rewrite:

W (Pj;D) =
∑
yj∈Ỹj

Pj(yj) · ex(D)1 +
∑

yj∈Yj/Ỹj

Pj(yj) · ex(D)2.

Let xPj =
∑

yj∈Ỹj Pj(yj), then

W (Pj;D) = xPj · ex(D)1 + (1− xPj) · ex(D)2

= 1 · ex(D)2 + xPj · (ex(D)1 − ex(D)2).

Now consider any j 6= 1, we have

W (P1;D)−W (Pj;D) = (xPj − xP1) · (ex(D)2 − ex(D)1)

= (kβ∗ − ke1β∗1 − ke2β∗2)(xPj − xP1) ·

(
− 1
β∗1
1
β∗2

)

Note that for different non-trivial B-shape polyhedra D (i.e., different parameters ke1 , ke2 , kβ∗),

the above value differs only by a positive constant factor. This implies that if W (P1;D) −
W (Pj;D) > 0 for one non-trivial B-shape polyhedron, the value is also strictly positive for any

non-trivial B-shape polyhedron.

Recall that

W (P1;H(Abi, ubi))−W (Pj;H(Abi, ubi)) = V (P1; (Abi, ubi))− V (Pj; (Abi, ubi)) > 0

where H(Abi, ubi) is a B-shape polyhedron. Therefore,

W (P1;D)−W (Pj;D) > 0,

for any non-trivial B-shape polyhedron.
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B.6.3 B-cover

For any payoff set D, we define the smallest B-shape polyhedron that covers D as its B-cover.

See Fig. 11 for an illustration.

Definition 11. For any payoff set D, its B-cover is defined as

covB(D)
.
=
⋂
β∈B

{v : β · v ≤ ρD(β)},

where ρD(β) = supv∈D β · v is the support function of D.

D

(a) A payoff set D derived from some three-
action decision problem

e2

e1

β∗

covB(D)

(b) The corresponding B-cover covB(D)

Figure 11

We state a few properties of B-cover that will be useful in our analysis.

Lemma 18. 1. (Monotonicity) If D ⊆ D′, covB(D) ⊆ covB(D′).

2. (Reflexive) If D is a B-shape polyhedron, covB(D) = D.

3. (Superadditivity) covB(D +D′) ⊇ covB(D) + covB(D′)

4. (Preserving Triviality) If covB(D) is trivial, then there exists a maximum in D. That is,

∃v̄ ∈ D such that v ≤ v̄ for all v ∈ D.

Proof. 1. Since D ⊆ D′, ρD(β) ≤ ρD′(β) for all β ∈ B. Therefore,⋂
β∈B

{v : β · v ≤ ρD(β)} ⊆
⋂
β∈B

{v : β · v ≤ ρD′(β)}.
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2. Clearly D ⊆ covB(D), because for every v ∈ D and every β ∈ B, β · v ≤ ρD(β).

Now consider any B-shape polyhedron, represented by

D =
⋂
β∈B

{v ∈ R2 : β · v ≤ kβ}

for some {kβ}β∈B ∈ R2. Note that for all β ∈ B and v ∈ D, β · v ≤ kβ, so we have

ρD(β) = maxv∈D β · v ≤ kβ. Therefore,

covB(D) =
⋂
β∈B

{v : β · v ≤ ρD(β)} ⊆
⋂
β∈B

{v : β · v ≤ kβ} = D,

which implies covB(D) = D.

3. For any ṽ ∈ covB(D) + covB(D′), there exists v ∈ covB(D) and v′ ∈ covB(D′) such that

ṽ = v+ v′. Since v ∈ covB(D) and v′ ∈ covB(D′), we have β · v ≤ ρD(β) and β · v′ ≤ ρD′(β)

for all β ∈ B. Therefore, for every β ∈ B, β · ṽ = β · (v+ v′) ≤ ρD(β) + ρD′(β) = ρD+D′(β),

which implies ṽ ∈ covB(D +D′).

4. If covB(D) is trivial, the constraint β∗ · v ≤ ρD(β∗) is redundant. That is {v : β∗ · v ≤
ρD(β∗)} ⊇ {v : e1 · v ≤ ρD(e1)} ∩ {v : e2 · v ≤ ρD(e2)}.

Let v̄1 = maxv∈D e1 ·v and v̄2 = maxv∈D e2 ·v. We claim that v̄ = (v̄1, v̄2) ∈ D. Suppose not,

then we have maxv∈D β
∗ ·v < β∗ · v̄. However, v̄ ∈ {v : e1 ·v ≤ ρD(e1)}∩{v : e2 ·v ≤ ρD(e2)}

but v̄ /∈ {v : β∗ · v ≤ ρD(β∗)}, contradicting to the constraint β∗ · v ≤ ρD(β∗) being

redundant. Thus, v̄ ∈ D and for all v ∈ D, v ≤ v̄, which concludes the proof.

B.6.4 Dominance

We say a collection of payoff sets D1, ..., Dk ⊆ R|Θ| is dominated by D if

D1 + · · ·+Dk ⊆ D.

The following observation is immediate:

Lemma 19. If {D`}k`=1 is dominated by D,

W (P1, ..., Pm;D) ≥
k∑
`=1

W (P1, ..., Pm;D`).
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Proof. Let t` be a maxmin strategy to W (P1, ..., Pm;D`). Construct

t : Y → D

y 7→
k∑
`=1

t`(y).

Then

W (P1, ..., Pm;D) ≥ min
P∈J

∑
y

P(y) · t(y)

= min
P∈J

∑
y

P(y) ·
k∑
`=1

t`(y)

= min
P∈J

k∑
`=1

∑
y

P(y) · t`(y)

≥
k∑
`=1

min
P∈J

∑
y

P(y) · t`(y)

=
k∑
`=1

W (P1, ..., Pm;D`).

Next, we present the key lemma underlying our uniqueness theorem.

Lemma 20. Suppose a collection of decision problems D1, ..., Dm is dominated by a B-shape

polyhedron D, and satisfies

m∑
j=1

W (Pj;Dj) ≥ W (P1, ..., Pm;D).

Then covB(Dj) must be trivial for all j 6= 1.

Proof. Since D1 + · · ·+Dm ⊆ D, from properties 1 and 2 in Lemma 18,

covB(D1 + · · ·+Dm) ⊆ covB(D) = D.

From property 3 in Lemma 18,

covB(D1) + · · ·+ covB(Dm) ⊆ covB(D1 + · · ·+Dm),

so covB(D1), · · · , covB(Dm) is also dominated by D.
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Now suppose by contradiction that covB(Dj) is not trivial for some j 6= 1. Then

W (P1, ..., Pm;D) ≥
m∑
j=1

W (P1, ..., Pm; covB(Dj))

≥
m∑
j=1

W (P1; covB(Dj))

>
m∑
j=1

W (Pj; covB(Dj))

≥
m∑
j=1

W (Pj;Dj)

where the first inequality follows from Lemma 19, second inequality follows from Lemma 15,

the third inequality follows from Lemma 17, and the last inequality follows from cov(Dj) ⊇ Dj.

Therefore, it contradicts to
∑m

j=1W (Pj;Dj) ≥ W (P1, ..., Pm;D), and Dj must be trivial for all

j 6= 1.

B.6.5 Common Support of the Blackwell Supremum

Lemma 21. Suppose Pj(yj|θ) > 0 for all j, yj, θ, and P ∗ ∈ J (P1, ..., Pm) is a Blackwell supre-

mum of P1, ..., Pm. Then, P ∗(·|θ1) and P ∗(·|θ2) have common support; that is, for any y1, ..., ym,

P ∗(y1, ..., ym|θ1) > 0 if and only if P ∗(y1, ..., ym|θ2) > 0.

Proof. If P ∗(·|θ1) and P ∗(·|θ2) have different supports, then there exists y that induces a point-

mass belief either on state θ1 or θ2. So the corresponding Zonotope ΛP ∗ will include either a

point (x, 0) or (0, x) for some x > 0. Since Pj(yj|θ) > 0 for all j, yj, θ, none of the Zonotopes ΛPj

contains such points. From Lemma 1, ΛP ∗ = co(ΛP1 ∪ · · · ∪ΛPm), which also should not contain

such points, leading to a contradiction.

B.6.6 Proof of the Theorem

Proof of Uniqueness for Theorem 1. Let σ∗ be a robustly optimal strategy in the decision prob-

lem (Abi, ubi). We have

V (P1, ..., Pm; (Abi, ubi)) = min
P∈J (P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

This is a state-by-state optimal transport problem, and so the corresponding dual problem is

max
φj :Θ×Yj→R, j=1,...,m

∑
θ

∑
j

∑
yj

φj(θ, yj)Pj(yj|θ)
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s.t.
m∑
j=1

φj(θ, yj) ≤ ubi(θ, σ∗(y)) ∀θ,y.

Or in vector form:

max
φj :Yj→R|Θ|, j=1,...,m

∑
j

∑
yj

φj(yj) ·Pj(yj)

s.t.

m∑
j=1

φj(yj) ≤ ubi(·, σ∗(y)) ∀y.

Let {φ∗j}mj=1 be a solution to the dual problem. Define Dj = co({φ∗j(yj)|yj ∈ Yj}) − R2
+ for

j = 1, ...,m. Note that D1 + · · ·+Dm ⊆ H(Abi, ubi), so {Dj}mj=1 is dominated by H(Abi, ubi), and

satisfies

m∑
j=1

W (Pj;Dj) ≥
m∑
j=1

∑
yj

φ∗j(·, yj) ·Pj(yj)

= V (P1, ..., Pm; (Abi, ubi))

= W (P1, ..., Pm;H(Abi, ubi)).

From Lemma 20, cov(D2), ..., cov(Dm) must be trivial, and property 4 of Lemma 18 implies that

for each j 6= 1, there exists y∗j such that φ∗j(y
∗
j ) ≥ φ∗j(yj) for all yj. Now we define φ̃j(yj) = φ∗j(y

∗
j )

for all yj as a constant function. Since φ̃j(yj) ≥ φ∗j(yj) and φ∗1, φ̃2, ..., φ̃m is feasible in the dual

problem, φ∗1, φ̃2, ..., φ̃m is also a solution to the dual problem.

From Lemma 2 and Corollary 1, a Blackwell supremum P ∗ ∈ J (P1, ..., Pm) solves Nature’s

MinMax Problem. From the minmax theorem, P ∗ is a solution to

min
P∈J (P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

Lemma 21 implies that P ∗(·|θ1) and P ∗(·|θ2) have a common support, which we denote by

Ȳ = {y ∈ Y,P(y) > 0}.
Now for any (y1, ȳ−1) ∈ Ȳ , complementary slackness implies

φ∗1(·, y1) +
m∑
j=2

φ̃j(·, ȳj) = ubi(·, σ∗(y1, ȳ−1)).

For any (y1, y−1) ∈ Y , the dual constraint says

φ∗1(·, y1) +
m∑
j=2

φ̃j(·, yj) ≤ ubi(·, σ∗(y1, y−1)).
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Since φ̃j is constant for j ≥ 2, the left-hand side of the two equations above are the same,

which implies u(·, σ∗(y1, ȳ−1)) ≤ u(·, σ∗(y1, y−1)). Since (Abi, ubi) is a non-trivial binary-action

decision problem, any two (mixed) actions are either identical or induce payoff vectors that are

not ordered. Therefore, ubi(·, σ∗(y1, ȳ−1)) ≤ ubi(·, σ∗(y1, y−1)) implies σ∗(y1, ȳ−1) = σ∗(y1, y−1).

So we have derived that for any y1 ∈ Y1 and y−1, y
′
−1 ∈ Y−1, σ∗(y1, y−1) = σ∗(y1, y

′
−1), which

concludes the proof.
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