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Abstract

An agent makes decisions based on multiple sources of information. In

isolation, each source is well understood, but their correlation is unknown.

We study the agent’s robustly optimal strategies— those that give the best

possible guaranteed payoff, even under the worst possible correlation. With two

states and two actions, we show that a robustly optimal strategy uses a single

information source, ignoring all others. In general decision problems, robustly

optimal strategies combine multiple sources of information, but the number

of information sources that are needed has a bound that only depends on the

decision problem. These findings provide a new rationale for why information

is ignored.
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1 Introduction

From the mundane to the important, most decisions are made with the aid of many

information sources. Treatment decisions can be made by consulting multiple doctors.

Retirement plans can follow the advice of numerous financial experts. These different

information sources are often correlated, as doctors may base their recommendations

on the same study and financial analysts may have incentives to echo each other.

Understanding how multiple sources are correlated is hard. In a scientific study,

for example, determining the correlation among variables requires an exponentially

increasing sample size—known as the “curse of dimensionality.” This difficulty brings

the risk of misinterpreting correlations, which can lead to flawed inferences and sub-

optimal decisions. Therefore, an agent may look to make decisions that do not leave

them vulnerable to misspecifications in correlation.

In this paper, we assume that an agent fully understands each information source

in isolation, but has no knowledge of the correlations among different information

sources. To guard against this lack of knowledge, the agent chooses a strategy that

performs well even under the worst possible correlation structure. As we will see, this

robustness concern could lead the agent to ignore information.

As an example, consider the following hypothetical scenario: The Centers for

Disease Control (CDC) is setting guidelines for administering a new Covid treatment

to a patient population that has equal prior probabilities of having either Covid or

the Flu. The treatment is designed for Covid, so it is beneficial for Covid patients,

but only causes side effects for those with the Flu. The payoff matrix is given in

Table 1, where the payoffs from no treatment are normalized to zero.

Treatment No Treatment
Covid 30 0
Flu -20 0

Table 1: Payoffs from the Treatment

Since patients with different diseases may develop different symptoms with differ-

ent probabilities, these symptoms can serve as informative signals to guide treatment

decisions. Suppose there are two well-understood studies: one describes the relation-

ship between the diseases (Covid/Flu) and the Cough symptom; the other describes

the relationship between the diseases and the Fever symptom. These relationships,
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represented as Blackwell experiments, are shown in Table 2, where “+” denotes the

presence of a symptom and “−” denotes its absence.

+ −
Covid 0.9 0.1
Flu 0.5 0.5

Cough

+ −
Covid 0.5 0.5
Flu 0.1 0.9

Fever

Table 2: Known Relationships between Diseases and Symptoms

However, no studies have jointly examined both Cough and Fever symptoms. For

instance, we do not have data on how likely it is that a Covid patient will simultane-

ously develop both Cough and Fever symptoms. Lacking knowledge on correlation,

the goal is to design a treatment guideline that utilizes the available information while

being robust to all possible correlations.

A simple strategy that protects against the hidden correlation is to base the treat-

ment decision on only one symptom. If using only the Cough symptom, the treatment

should be administered if and only if the patient has a positive Cough symptom. This

strategy guarantees a value of 1
2
[0.9× 30+ 0.5× (−20)] = 8.5 regardless of the corre-

lation. Similarly, the CDC could also base the treatment decision only on the Fever

symptom, which guarantees a value of 1
2
[0.5 × 30 + 0.1 × (−20)] = 7. Since the

strategy using the Cough symptom guarantees a higher value, we call it a best-source

strategy, which selects a single information source—the best one when considered

individually—and best responds to it.

While the best-source strategy has the virtue of being simple, it completely forfeits

the potential benefits from observing multiple information sources. Could the CDC

do better by using a more sophisticated treatment strategy that makes use of both

symptoms? Theorem 1 says the answer is no: a best-source strategy is always robustly

optimal in any decision problem involving two states and two actions. Moreover,

whenever the best information source is unique, e.g. the Cough symptom in this

example, the best-source strategy is the unique robustly optimal strategy.

With more than two actions, best-source strategies are no longer always optimal,

and robustly optimal strategies will typically use multiple information sources. To

illustrate, let us revise the example and suppose now there are two treatments: one is

the previous treatment, designed for Covid, and the other is an additional treatment,
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designed for the Flu. The payoff from each treatment is given in Table 3; the total

payoff is the sum of the payoffs from the two treatments.

T1 N1

Covid 30 0
Flu -20 0

Treatment 1

T2 N2

Covid -20 0
Flu 30 0

Treatment 2

Table 3: Payoffs from Two Treatments

The CDC now chooses among four actions, in the form of {T1, N1} × {T2, N2},
specifying whether to administer each of the treatments. Again, a simple strategy

that is not vulnerable to correlations is to base the treatment decision on only one

symptom. It can be easily checked that using either the Cough or the Fever symptom

alone guarantees a value of 8.5+7 = 15.5. However, the CDC can do better by basing

the Treatment 1 decision on the Cough symptom and the Treatment 2 decision on

the Fever symptom, as described in Table 4. This strategy, which uses the best

information source for each treatment, guarantees a value of 8.5+8.5 = 17 regardless

of the actual correlations between the information sources.

Fever+ Fever−
Cough+ T1 + T2 T1

Cough− T2 No Treatment

Table 4: Using Information from Both Symptoms

A key property in the decision problem in the above example is the additive

separability of payoffs across the two treatments. Indeed, for any decision problem

consisting of a collection of binary-state binary-action subproblems whose utilities are

summed, which we call a separable problem, we show that a robustly optimal strategy

is to use the best-source strategy for each subproblem separately.

The separability property may seem rather restrictive, but surprisingly, when the

state is binary, every decision problem can be written as a separable problem. Based

on this observation, Theorem 2 provides a general construction of robustly optimal

strategies for every binary-state decision problem.

The construction in Theorem 2 starts by removing all dominated actions and

ordering the remaining n actions according to how much utility they generate in the
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first state. The decision problem is then decomposed into n−1 binary-action decision

problem, each specifying a local comparison between a pair of consecutive actions.

These n − 1 decomposed problems are combined into one separable problem, which

proves to be equivalent to the original decision problem. In this separable problem,

each local comparison uses a best-source strategy to determine the recommended

action. Finally, a robustly optimal strategy can be constructed by mapping the

profile of recommendations in each local comparison into a (possibly mixed) action in

the original problem. Such a robustly optimal strategy uses an information source if

and only if it is the best source in one of the local comparisons, and so it uses multiple

information sources precisely when the best sources differ across local comparisons.

Thus, the number of information sources used cannot exceed n − 1, the number of

decomposed problems.

With three or more states, we do not have a full characterization of the robustly

optimal strategy. However, as in Theorems 1 and 2, Theorem 3 establishes a bound,

N , such that there is always a robustly optimal strategy that uses at most N infor-

mation sources. Again, this bound depends only on the decision problem, meaning

that as the number of information sources grows large, the fraction of information

sources used converges to 0.

Together, Theorems 1, 2, and 3 reveal a common theme: the agent tends to ignore

some freely available information. Ignorance of information is well-documented, with

existing explanations often attributing this behavior to costs or psychological distor-

tions (see Handel and Schwartzstein (2018) for a detailed discussion). Our results

offer a different and less recognized rationale: ignorance of information can lead to

more robust decisions when there is uncertainty about the correlations among various

information sources. This explanation has distinct counterfactual implications. For

instance, an agent who finds it costly to acquire or process information would be-

come more informed as stakes are raised, but one who is concerned with correlation

robustness would not react to such an incentive.

To isolate the effect of ambiguity about the correlation among information sources,

our model makes two assumptions: First, the agent has no knowledge about the cor-

relation of the different information sources. Second, the agent possesses perfect

knowledge of each of the information sources in isolation. In reality, the situation

might be less extreme—there might be some knowledge about the correlations or

some ambiguity about the marginal sources. Section 6.1 shows that our results ex-
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tend straightforwardly to certain additional knowledge about the correlations among

information sources. Section 6.2 extends Theorem 1 to a setting in which the agent

also faces ambiguity about the marginal information sources.

The rest of the paper is organized as follows: Section 2 introduces the formal

model. Section 3 establishes preliminary results that will be useful throughout the

paper. Sections 4 and 5 consider the binary-state and general-state environments,

respectively. Section 6 discusses extensions. Section 7 concludes. The remainder of

this introduction places our contribution within the context of the broader literature.

Related Literature: Our paper studies robust decision making under uncertain

correlations among information sources. The practice of finding robust strategies

traces back at least to Wald (1950). The worst-case approach we adopt is in line with

the literature on ambiguity aversion (Gilboa and Schmeidler, 1989). In particular, a

recent experiment by Epstein and Halevy (2019) documents aversion to ambiguity on

correlation structures.

Our approach to modeling information aggregation is closely related to the robust

forecast aggregation literature, which seeks to combine multiple forecasts into a sin-

gle prediction without detailed knowledge of the underlying information structure.1

Arieli, Babichenko, and Smorodinsky (2018) first proposed an adversarial framework

for combining forecasts, and considered various types of ambiguity, such as when one

information source is Blackwell more informative than the other, but the agent does

not know which. Moreover, they study a specific decision problem where the agent

aims to minimize the quadratic loss to the true state. By contrast, we focus solely on

ambiguity in the correlation structure and consider general decision problems. Our

ambiguity set is also closely related to that in Levy and Razin (2020), who consider

both the correlation among signals and the correlation across different dimensions of

the a multi-dimensional state space. They adopt an interim approach, where ambi-

guity arises after the signals have been realized. By contrast, our approach is ex-ante,

where the worst-case correlation does not vary with signal realizations.

The agent in our model has a maxmin objective—evaluating each strategy by its

worst-case payoff across all correlation structures. Arieli, Babichenko, Talgam-Cohen,

and Zabarnyi (2023) adopts a complementary approach, minmax regret, where the

1This literature often assumes that only forecasts—experts’ beliefs about the state—are observ-
able, instead of the raw information informing those beliefs, as in our model. See Section 6.3 for
further discussion of this assumption.
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agent concerns the largest opportunity loss relative to what she could have achieved

if she knew the correlation and best responded accordingly. They show that when the

marginal experiments are symmetric, following a single random information source is

robustly optimal under both robustness paradigms.

A crucial step in our analysis involves understanding the joint informativeness of

correlated information sources. Börgers, Hernando-Veciana, and Krähmer (2013) first

introduce the notions of complementarity and substitutability between two informa-

tion structures and provide an explicit characterization. Cheng and Börgers (2024)

further explore the relationship between joint informativeness of experts’ recommen-

dations and their chance of disagreement. In contrast, our analysis specifically focuses

on those least informative correlation structures, where the information sources can

be viewed as extreme substitutes for each other.

Several studies have investigated learning from multiple information sources with

known correlations. Liang and Mu (2020) examine a social learning setting where

agents’ information is complementary. Ichihashi (2021) looks at how a firm purchases

data from consumers with potentially correlated information source. Liang, Mu, and

Syrgkanis (2022) study an agent’s optimal dynamic allocation of attention to multiple

correlated information sources. Finally, Brooks, Frankel, and Kamenica (2024) ex-

plores the comparison of experiments with known correlations and characterize their

ranking that is robust to any additional information.

Robustness to correlations has also been studied in other contexts such as mech-

anism design. Carroll (2017) studies a multi-dimensional screening problem, where

the principal knows only the marginals of the agent’s type distribution, and designs a

mechanism that is robust to all possible correlation structures. He and Li (2020) and

Zhang (2021) study an auctioneer’s robust design problem when selling an indivisible

good, concerning the correlation of values among different agents.

2 Model

An agent faces a decision problem Γ = (Θ, µ0, A, ρ), with a finite state space Θ,

a prior µ0 ∈ ∆Θ, a finite action space A, and a utility function ρ : Θ × A → R.
To later simplify notation, we will later refer to decision problems as (A, u), where

u(θ, a) = µ0(θ)ρ(θ, a) is the prior-weighted utility function.

The agent has access to m information sources, denoted by {Pj}mj=1. Each source
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is a marginal experiment, Pj : Θ → ∆Yj, mapping each state to a distribution over

some finite signal set Yj. Let Y = Y1×· · ·×Ym denote the set of all possible profiles of

signal realizations, with typical element y = (y1, . . . , ym). The agent can observe the

signals from all marginal experiments, {Pj}mj=1, but does not have detailed knowledge

of the joint. Thus, the agent conceives of the following set of joint experiments:

J (P1, ..., Pm) =

P : Θ → ∆(Y) :
∑
y−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

 .

A strategy for the agent is a mapping, σ : Y → ∆(A), and the set of all strategies

is denoted by Σ. The agent’s problem is to maximize her expected payoff considering

the worst possible joint experiment:

V (P1, . . . , Pm; (A, u)) := max
σ∈Σ

min
P∈J (P1,...,Pm)

∑
θ∈Θ

∑
y∈Y

P (y|θ)u(θ, σ(y)).

Whenever there is no confusion about the relevant decision problem, we omit (A, u)

from the argument of V . We call a solution to the problem a robustly optimal

strategy.

If m = 1, the agent observes only a single experiment P : Θ → ∆(Y ) and V (P ) is

the classical value of a Blackwell experiment. In this case, a robustly optimal strategy

is just an optimal strategy for a Bayesian agent.

3 Preliminaries

3.1 The Blackwell Order

We will use the Blackwell order of experiments throughout the paper. For the sake

of completeness, we briefly review it in this subsection.

Definition 1. P : Θ → ∆(Y ) is more informative than Q : Θ → ∆(Z) if, for every

decision problem, we have the inequality V (P ) ⩾ V (Q). We also say that P Blackwell

dominates Q.

We say that two experiments are Blackwell equivalent if they Blackwell-dominate

each other.
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There are two other natural ways of ranking experiments. The first uses the notion

of a garbling.

Definition 2. Q : Θ → ∆(Z) is a garbling of P : Θ → ∆(Y ) if there exists a function

g : Y → ∆(Z) (the “garbling”) such that Q(z|θ) =
∑

y g(z|y)P (y|θ).

Thus Q is a garbling of P when one can replicate Q by “adding noise” to the signal

generated from P . The second ranking uses the feasible state-action distributions.

Definition 3. Given a set of actions A and an experiment P : Θ → ∆(Y ), the

feasible set of P is

ΛP (A) =

{
λ : Θ → ∆A

∣∣∣ λ(a|θ) =∑
y

σ(a|y)P (y|θ) for some σ : Y → ∆(A)

}
.

The feasible set of an experiment specifies what conditional action distributions

can be obtained by some choice of strategy σ. One might then say that more infor-

mation allows for a larger feasible set.

Blackwell’s Theorem states that these rankings of informativeness are equivalent.2

Blackwell’s Theorem. The following statements are equivalent

1. P is more informative than Q;

2. Q is a garbling of P ;

3. For all sets A, ΛQ(A) ⊆ ΛP (A).

In addition, when |Θ| = 2, Theorem 10 in Blackwell (1953) shows that the above

statements are also equivalent to

4. For all sets A with |A| = 2, ΛQ(A) ⊆ ΛP (A).

Note that all sets A with the same cardinality give essentially the same set ΛP (A),

so condition (3) could equivalently be stated as as follows: for every n ∈ N, we

have ΛQ({1, . . . , n}) ⊆ ΛP ({1, . . . , n}). Similarly, condition (4) can be stated as

ΛQ({1, 2}) ⊆ ΛP ({1, 2}). To simplify notation, when |A| = 2, we will omit A in the

notation, simply writing ΛP .

2For a proof, see e.g. Blackwell (1953) or de Oliveira (2018).
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Condition (4) is particularly useful as it offers a simple graphical representation

of Blackwell experiments when |Θ| = 2. Figure 1(a) illustrates this using the cough

symptom from the introduction (see Table 2). To characterize ΛP , it suffices to specify

the probability of taking one of the two actions. The x-axis denotes the probability of

taking this action in state 1, and the y-axis denotes the probability in state 2. Clearly

(0, 0), (1, 1) ∈ ΛP for all P , because these two points represent taking a constant action

regardless of the signal realization. With the information obtained from the Blackwell

experiment, additional points can be obtained. For example, the point (0.1, 0.5) in

Figure 1(a) can be achieved if the decision-maker chooses this action precisely when

the patient does not have a cough symptom. Symmetrically, the decision-maker could

choose the same action precisely when the agent has a cough symptom, which yields

the point (0.9, 0.5). Such pure strategies give us the extreme points of the polytope

ΛP and the possibility of randomization convexifies the set. Thus, ΛP is a convex and

symmetric3 polytope in [0, 1]2, corresponding to the entire shaded area. Conversely,

as shown in Bertschinger and Rauh (2014), any convex and symmetric polytope in

[0, 1]2 correspond to ΛP for some P .

λ(·|θ = 2)

(0,0) λ(·|θ = 1)

(1,1)

(0.1, 0.5)
(0.9,0.5)

(a) An example of ΛP (A) with |Θ| = |A| = 2

(0,0)

ΛP1

ΛP2

ΛP

(b) ΛP as the convex hull of ΛP1
∪ ΛP2

Figure 1

3By symmetric we mean if λ ∈ ΛP , (1, 1)− λ ∈ ΛP .
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3.2 The Blackwell Supremum

Having reviewed the Blackwell order, we now turn our attention to a crucial concept

that will be used extensively in our analysis: the Blackwell supremum.

Definition 4. Let P1, P2, . . . , Pm be arbitrary Blackwell experiments. We say that P

is the Blackwell supremum of P1, P2, . . . , Pm if

1. P is more informative than P1, P2, . . . , Pm;

2. If Q is more informative than P1, P2, . . . , Pm, then Q is also more informative

than P .

By definition, if there are two Blackwell suprema, they must Blackwell dominate

each other. This means that any two Blackwell suprema must be Blackwell equivalent

and so Blackwell suprema, if they exist, are unique up to Blackwell equivalence.

Furthermore, when the state space is binary, the Blackwell supremum always

exists and can be characterized using the feasible set, as illustrated in Figure 1(b).

From Blackwell’s theorem, for any P ′ that is more informative than P1, ..., Pm, the

corresponding feasible set ΛP ′ must contain ΛP1 , . . . ,ΛPm . Since the feasible set is

always convex, ΛP ′ must also contain co(ΛP1 ∪ ΛP2 · · · ∪ ΛPm). Moreover, the set

co(ΛP1 ∪ ΛP2 · · · ∪ ΛPm) is convex and symmetric, and so it corresponds to some

Blackwell experiment P , which is thus the least information Blackwell experiment

that dominates P1, ..., Pm—the Blackwell supremum. This observation yields the

following lemma:4

Lemma 1. When |Θ| = 2, the Blackwell supremum always exists. An experiment P is

the Blackwell supremum of P1, P2, . . . , Pm if and only if ΛP = co(ΛP1 ∪ΛP2 · · ·∪ΛPm).

It is useful to note that the above lemma holds specifically for when |Θ| = 2.

When |Θ| ≥ 3, a Blackwell supremum may not exist, as illustrated in example 18 of

Bertschinger and Rauh (2014).

3.3 Nature’s MinMax Problem

Most of our focus will be on the robustly optimal strategies for the agent, but it

will be helpful to first understand Nature’s MinMax problem. Since the objective

4For a proof, see Proposition 16 in Bertschinger and Rauh (2014).
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function is linear in both σ and P , and the choice sets of σ and P are both convex

and compact, the minimax theorem (Sion, 1958) implies that

V (P1, . . . , Pm) = min
P∈J (P1,...,Pm)

max
σ∈Σ

∑
θ∈Θ

∑
(y1,...,ym)∈Y

P (y1, . . . , ym|θ)u(θ, σ(y1, . . . , ym))

= min
P∈J (P1,...,Pm)

V (P ) (1)

That is, the value of the agent’s maxmin problem equals the value of a minmax

problem where Nature chooses an experiment in the set J (P1, . . . , Pm) to minimize

a Bayesian agent’s value in the decision problem.

Observe that every experiment in J (P1, . . . , Pm) must be more informative than

every Pj, since the projection onto the jth coordinate is a garbling. So if we let

D(P1, . . . , Pm) denote the set of Blackwell experiments that dominates P1, ..., Pj, then

J (P1, . . . , Pm) ⊆ D(P1, . . . , Pm).
5 The set D(P1, . . . , Pm) is in general a larger set,

because not every experiment that dominates P1, ..., Pm can be represented as a joint

experiments with marginals P1, ..., Pm.
6 However, the next lemma shows that relaxing

Nature’s problem to choosing an experiment from the set D(P1, . . . , Pm) does not

change the value of the problem.

Lemma 2.

V (P1, . . . , Pm) = min
P∈D(P1,...,Pm)

V (P ) (2)

Proof. See Appendix A.1.

The idea underlying Lemma 2 is that in the relaxed problem above, Nature could

restrict attention to the experiments that are Blackwell minimal— those that do

not Blackwell dominate any other experiment in D(P1, . . . , Pm). Additionally, any

Blackwell minimal element in this set can be represented as a joint experiment in

J (P1, . . . , Pm), as shown in Appendix A.1.

Lemma 2 is particularly useful when the state is binary. Under binary states,

the Blackwell supremum P of P1, ..., Pm exists, and it is the unique (up to Blackwell

5Technically, if we allow any finite set to be a signal space, D is not a set in the strict set-
theoretical sense. We can resolve this issue by fixing a large enough universe U of signals, such that
all sets Yj ⊂ U . For our purposes U = N is large enough.

6For a simple example, consider two experiments P1 and P2 whose signal spaces Y1 and Y2

are both singleton. Then J (P1, P2) contains only the completely uninformative experiment while
D(P1, P2) contains all Blackwell experiments.

11



equivalence) Blackwell minimal element in D(P1, . . . , Pm). Therefore, P solves (2)

regardless of the decision problem, which yields the following corollary.

Corollary 1. When |Θ| = 2,

V (P1, ..., Pm) = V (P (P1, ..., Pm))

where P (P1, ..., Pm) is the Blackwell supremum of experiments {P1, ..., Pm}.

Thus, in binary-state decision problems, the agent’s value from using a robust

strategy is the same as the value she would obtain if she faced a single experiment—

the Blackwell supremum of all marginal experiments. Moreover, the Blackwell supre-

mum depends only on the marginal experiments, and not on the particular decision

problem.

4 Binary State Environment

In this section, we present our results for the special case in which |Θ| = 2. We

characterize both the robustly optimal strategies and values in this environment.

4.1 Binary-State Binary-Action Problems

As seen in the introductory example, one simple strategy that generates a robust

value independent of the correlations among the marginal information sources is to

choose exactly one marginal experiment from {P1, . . . , Pm} and play the optimal

strategy that uses that information alone, ignoring the signal realizations of all other

experiments. By choosing the marginal experiment optimally, the agent achieves

an expected payoff of maxj=1,...,n V (Pj), regardless of the actual joint experiment

P ∈ J (P1, . . . , Pm). We call such a strategy a best-source strategy.

It is sometimes clear that a best-source strategy is robustly optimal. Suppose,

for example, that we have two information sources, P1 and P2, and that P1 is more

informative than P2. We can then consider a correlation structure where the signal of

P2 is generated by garbling the signal of P1. Consequently, after the agent observing

the signal from P1, observing signals from P2 provides no additional information.

Therefore, the agent loses nothing by ignoring P2, and the best-source strategy that

uses only P1 is optimal.
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The interesting cases are when information sources are not Blackwell ranked.

In such cases, the Blackwell supremum is strictly more informative than any single

information source, so one may hope to do better than a best-source strategy by

combining different sources. Surprisingly, Theorem 1 shows that, in decision problems

with binary states and binary actions, the agent can never do better than a best-

source strategy. Moreover, if the information sources satisfy full support and we

exclude cases where multiple information sources are optimal, then any strategy that

uses more than one source is strictly suboptimal.

Theorem 1. For all (A, u) with |A| = |Θ| = 2, any best-source strategy is robustly

optimal. In other words,

V (P1, . . . , Pm) = max
j=1,...,m

V (Pj).

In addition, if each marginal experiment has full support, i.e., Pj(yj|θ) > 0 for all

j, yj, θ, and argmaxj=1,...,m V (Pj) is a singleton, then all robustly optimal strategies

are best-source strategies.

Proof. We prove the first part of the theorem. The proof of the second part requires

different arguments and so we defer it to Appendix B.5.

To simplify notation, we write P to refer to the Blackwell supremum, P (P1, . . . , Pm).

By Corollary 1, it suffices to show that V (P ) = maxj=1,...,m V (Pj). By Lemma 1,

ΛP = co (ΛP1 ∪ · · · ∪ ΛPm) (3)

Now, the maximum utility achievable given P is V (P ) = maxλ∈ΛP

∑
a,θ u(θ, a)λ(a|θ).

Since the maximand is linear in λ, the fundamental theorem of linear programming

states that the maximum is achieved at an extreme point of ΛP . By (3), an extreme

point of ΛP must belong to some ΛPj
. Hence, we have

V (P ) = max
λ∈ΛPj

∑
a,θ

u(θ, a)λ(a|θ) = V (Pj) ≤ max
j′=1,...,m

V (Pj′).

Since P is more informative than every Pj, we also have V (P ) ≥ maxj′=1,...,m V (Pj′),

concluding the proof.

The idea of Theorem 1 can be visualized in Figure 2 for two marginal experiments.
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(0,0)

ΛP1

ΛP2

ΛP

u

Figure 2: The maximum is achieved at an extreme point that belongs to ΛP2

Each marginal Blackwell experiment P1, P2 can be represented by ΛP1 ,ΛP2 , the set of

feasible state-action distributions generated by the experiment. The corresponding

ΛP for Blackwell supremum P is the convex hull of ΛP1 ∪ ΛP2 . Since the utility

function is linear with respect to λ ∈ ΛP , the maximum is achieved at an extreme

point, which belongs to either ΛP1 or ΛP2 , and thus can be achieved by using a single

marginal experiment.

4.2 Separable Problems

While using a single information source is sufficient in binary-state, binary-action

decision problems, more complicated problems often require the agent to use more

sophisticated strategies to robustly aggregate information from multiple sources. For

example, in the Covid example with two treatments presented in the introduction,

we saw that a simple yet robust strategy that uses multiple information sources is

to consider the two treatments separately, using the best corresponding information

source to determine whether to administer each treatment.

As a first step toward the analysis of robustly optimal strategies in general binary-

state decision problems, we generalize the idea in the example to a class of decision

problems, which we call separable.

Definition 5. A decision problem (A, u) is a separable problem if A can be written

as a product A1 × · · · × Ak where |Aℓ| = 2 for all ℓ = 1, ..., k, and

u(θ, a) = u1(θ, a1) + · · ·+ uk(θ, ak)

14



for some {uℓ : Θ× Aℓ → R}kℓ=1.

We will use
⊕k

ℓ=1(Aℓ, uℓ) to refer to a separable problem and we refer to each of

the binary decision problems, (Aℓ, uℓ), as a subproblem.

The next result provides a simple solution to separable problems: for each binary-

action subproblem, by Theorem 1, one can derive a robustly optimal strategy by

paying attention to the best marginal experiment and best responding to it. Assem-

bling these strategies then yields a robustly optimal strategy for the original problem.

Lemma 3. For any separable problem
⊕k

ℓ=1(Aℓ, uℓ),

V

(
P1, . . . , Pm;

k⊕
ℓ=1

(Aℓ, uℓ)

)
=

k∑
ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ)).

Moreover, let σℓ : Y → ∆Aℓ be a robustly optimal strategy for subproblem (Aℓ, uℓ).

Then σ : Y → ∆A1 × · · · ×∆Ak defined by

σ(y1, ..., ym) =

(
σℓ(y1, ..., ym)

)k

ℓ=1

for all y1, ..., ym (4)

is a robustly optimal strategy for decision problem
⊕k

ℓ=1(Aℓ, uℓ).

Proof. See Appendix A.2.

Remark. In any separable decision problem, it is immediate that

V

(
P1, . . . , Pm;

k⊕
ℓ=1

(Aℓ, uℓ)

)
≥

k∑
ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ)). (5)

The equality in Lemma 3 follows as a result of the special property highlighted in

Corollary 1—that in binary state environments, there exists a single P (P1, . . . , Pm)

that uniformly minimizes the agent’s value across all decision problems.7

7In contrast, with three or more states, Nature’s worst case joint experiment in Eq. (1)

typically depends on the decision problem. Therefore, minP∈J V (P ;
⊕k

ℓ=1(Aℓ, uℓ)) ≥∑k
ℓ=1 minP∈J V (P ; (Aℓ, uℓ)), which in general is not an equality.
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4.3 General Decision Problems and Decompositions

The special structure of separable problems yields simple robustly optimal strategies.

To what extent can this structure be applied in tackling more general decision prob-

lems? We show in this section that every binary-state decision problem is equivalent

to a separable problem in a sense to be made precise. The central idea involves de-

composing an n-action decision problem into n− 1 binary-action decision problems,

and using these subproblems to construct the corresponding separable problem that

is equivalent to the original problem. We call the resulting separable problem the

binary decomposition.

We first define formally what it means for two decision problems to be equivalent.

Given a decision problem (A, u), let8

H(A, u) = co{u(·, a) : a ∈ A} − R2
+

be the associated polyhedron containing all payoff vectors that are either achievable

or weakly dominated by some mixed action. An example of H(A, u) is depicted in

Figure 3.

θ = 2

θ = 1

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

Figure 3: The shaded area represents H(A, u)

Whenever H(A′, u′) = H(A, u), it is immediate that

V (P1, . . . , Pm; (A
′, u′)) = V (P1, . . . , Pm; (A, u))

8Here and in what follows, whenever + and − are used in the operations of sets, they denote the
Minkowski sum and difference.
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θ = 2

(0,0) θ = 1

u1(·, 1)

u2(·, 1)

u3(·, 1)

u(·, a4)

u(·, a3)

u(·, a2)

u(·, a1)

H(A, u)

(a) Binary decomposition

θ = 2

(0,0) θ = 1

u1(·, 1)

u3(·, 1)

H(A, u)

(b) A nonconsecutive sum of uℓ(·, 1) lies in
the interior of H(A, u)

Figure 4

for all Blackwell experiments P1, . . . , Pm, and so we call (A, u) and (A′, u′) equivalent.

Definition 6. Two decision problems (A, u) and (A′, u′) are equivalent if H(A, u) =

H(A′, u′).

Next we show, by direct construction, that every binary-state decision problem

is equivalent to a separable problem. We start with some normalization to simplify

exposition. First we remove all weakly-dominated actions,9 so that actions can be

ordered such that

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Moreover, by adding a constant vector, we can normalize u(·, a1) = (0, 0).

Definition 7. Given a decision problem (A, u), the binary decomposition of (A, u)

is a separable problem
⊕n−1

ℓ=1 (Aℓ, uℓ) where

Aℓ := {0, 1} , uℓ(·, 0) = (0, 0), uℓ(·, 1) = u(·, aℓ+1)− u(·, aℓ).

The key idea underlying the binary decomposition is to decompose the original

problem into binary-action decision problems that compare each pair of consecutive

9An action a ∈ A is weakly-dominated if there exists α ∈ ∆A such that u(·, a) ≤ u(·, α) and
u(·, a) ̸= u(·, α). If there are duplicated actions, we remove all but keep one copy.
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actions. This can be visualized in Figure 4(a) for an example with four actions.

The four-action decision problem is decomposed into three binary-action decision

problems, by examining the difference vectors u(·, aℓ+1)− u(·, aℓ). Each decomposed

subproblem can be interpreted as choosing whether to “move forward” to the next

action.

Notice that every feasible payoff vector in the original problem can be replicated

in the binary decomposition. This is due to the fact that u(·, ai) =
∑i−1

ℓ=1 uℓ(·, 1) +∑n−1
ℓ=i uℓ(·, 0) for all i = 1, ..., n. So H(A, u) ⊆ H

(⊕n−1
ℓ=1 (Aℓ, uℓ)

)
. Of course, the bi-

nary decomposition
⊕n−1

ℓ=1 (Aℓ, uℓ) could introduce additional feasible payoff vectors.

For example, in the example in Figure 4(b), the strategy (1, 0, 1) in the binary de-

composition yields a payoff vector that is infeasible in the original problem. However,

this additional payoff vector lies in the interior of H(A, u), and thus it is dominated

by one of the original (possibly mixed) actions. The next lemma shows that this is

generally true, so we have H(A, u) = H
(⊕n−1

ℓ=1 (Aℓ, uℓ)
)
.

Lemma 4. The binary decomposition of (A, u) is equivalent to (A, u).

Proof. See Appendix A.3.

Lemma 3 and Lemma 4 permit us to derive a robustly optimal strategy for any

decision problem (A, u) through its binary decomposition.

Theorem 2. Let
⊕n−1

ℓ=1 (Aℓ, uℓ) be the binary decomposition of (A, u), and σℓ be a

robustly optimal strategy for (Aℓ, uℓ). Then

1. V (P1, . . . , Pm; (A, u)) =
∑n−1

ℓ=1 maxj=1,...,m V (Pj; (Aℓ, uℓ)).

2. There exists σ∗ : Y → ∆A such that u(·, σ∗(y)) ≥
∑n−1

ℓ=1 uℓ(·, σℓ(y)) for all y.

Moreover, any such σ∗ is a robustly optimal strategy for (A, u).

Proof. See Appendix A.4.

Theorem 2 allows us to construct a robustly optimal strategy for any decision

problem (A, u) according to a two-step procedure:

1. For each subproblem, (Aℓ, uℓ), find a best-source strategy σℓ (which we know is

robustly optimal by Theorem 1).

2. For each realization y, pick a (mixed) action σ∗(y) ∈ ∆(A) such that u(σ∗(y)) ≥∑n−1
ℓ=1 uℓ(σ

∗
ℓ (y)).
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Notably, once σℓ(·) has been determined in Step 1, the marginal experiments, P1, . . . , Pm,

play no role in Step 2. In other words, the marginal experiments only influence the

ultimate choice of action in Step 1, and more specifically through its effect on the

choice of σ∗
ℓ (y) in each of the subproblems.

In contrast to Theorem 1, Theorem 2 also highlights the non-uniqueness of ro-

bustly optimal strategies when there are more than three actions. This is because

there could be multiple σ∗ that satisfies u(·, σ∗(y)) ≥
∑n−1

ℓ=1 uℓ(·, σℓ(y)) for all y. For

example, in the Covid example with two treatments in the introduction, the robustly

optimal strategy we derived in Table 4 recommends no treatment when a patient has

no symptoms. However, note that giving neither treatment is dominated by giving

both treatments, so replacing the No Treatment with T1 + T2 does not decrease the

guaranteed value, thus yielding another robustly optimal strategy. The reason that a

robustly optimal strategy may play a dominated action is that, when such a strategy

is played, the worst-case correlation structure will put probability 0 on the symptom

realization (Cough−, Fever−).

The theorem delivers two immediate corollaries about the (robust) value of differ-

ent marginal information sources.

Corollary 2. Suppose
⊕n−1

ℓ=1 (Aℓ, uℓ) is the binary decomposition of (A, u). For any

j,

V (P1, ..., Pm; (A, u)) > V (P1, . . . , Pj−1, Pj+1, . . . , Pm; (A, u))

if and only if V (Pj; (Aℓ, uℓ)) > maxj′ ̸=j V (Pj′ ; (Aℓ, uℓ)) for some ℓ = 1, ..., n− 1.

Corollary 2 shows that an additional marginal experiment robustly improves the

agent’s value if and only if it outperforms all other marginal experiments in at least

one of the decomposed problems. In particular, an experiment that performs rea-

sonably well across all decomposed problems can be completely ignored if, for each

decomposed problem, there is some other, more specialized experiment that is the

best. The next example shows that even when an experiment is the best single source,

it can be ignored.

Example 1. We revisit the Covid example with two treatments in the introduction.

Suppose in addition to the Cough and Fever, now we have a third informative symp-

tom, Headache, whose relationship to the diseases is given in Table 5.

Note that in either treatment 1 or treatment 2, when using the Headache symptom

alone, the agent can achieve a value of 1
2
(0.72× 30 + 0.28× (−20)) = 8. This means
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+ −
Covid 0.72 0.28
Flu 0.28 0.72

Table 5: Headache symptom

that Headache is the best information source when used in isolation, because it yields

a value of 8+8 = 16, which is greater than 15.5, the value of using either the Cough or

Fever symptom alone. However, this symptom will not be used in a robustly optimal

strategy: it is never the best information source for either treatment 1 or treatment 2,

as the value it yields is lower than 8.5, the value achieved by using the Cough symptom

for treatment 1 or using the Fever symptom for treatment 2.

Corollary 3. For any decision problem (A, u) and any collection of experiments

{Pj}mj=1, there exists a subset of marginal experiments {Pj}j∈J⊆{1,...,m} with |J | ≤
|A| − 1, such that

V (P1, · · · , Pm; (A, u)) = V ({Pj}j∈J ; (A, u)).

Corollary 3 implies that in an n-action decision problem, an agent needs to use at

most n − 1 sources of information. Note that this bound is independent of the fine

details of the decision problem, such as the exact cardinal utilities of the agent, and

the details of the marginal information sources available to the agent.

5 General-State Decision Problems

Our previous analysis focuses on binary-state decision problems. The cornerstone of

our approach is the decomposition of a complex decision problem into “elementary”

binary-action problems. By aggregating the simple solution of these binary-action

subproblems, we can derive a solution to the initial, more complex problem. A

natural question is whether this approach can be extended into environments with

more states. Unfortunately, it fails for multiple reasons: First, with more states, it is

unclear how to decompose a general decision problem into more “elementary” ones.

Second, the non-existence of the Blackwell supremum implies that in Nature’s minmax

problem Eq. (1), there may no longer be a single experiment that uniformly minimize

the agent’s value across all decision problems, exacerbating the complexity of the
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analysis (see Footnote 7). Lastly, an agent may want to use multiple information

sources even in simple binary-action decision problems, as illustrated in Example 2

below.

Example 2. Suppose that there are three states θ1, θ2, θ3. The marginal experiments

are both binary with respective signals x1, x2 and y1, y2, as given by Table 6.

PX

PX(x|θ) x1 x2

θ1 1 0
θ2 1 0
θ3 0 1

PY

PX(y|θ) y1 y2
θ1 1 0
θ2 0 1
θ3 0 1

Table 6

Intuitively, experiment PX indicates whether the state is θ3 or not and experiment

PY indicates whether the state is θ1 or not. Note that upon observing both experiments,

the agent obtains perfect information, and so in any decision problem, the agent

achieves the perfect information payoff.

Let A = {0, 1} and suppose that the utilities are as follows:10

u(θ, a = 1) = 1 (θ ∈ {θ1, θ3})− 0.9 · 1 (θ = θ2) ,

u(θ, a = 0) = 0.

By using only one information source (either PX or PY ), a = 1 is the unique optimal

action for any signal realization. Therefore, the agent’s expected payoff is 1−0.9+1 =

1.1. By contrast, when using both information sources, the full information payoff is

1 + 0 + 1 = 2.

Due to the difficulties highlighted above, an explicit construction of robustly op-

timal strategies remains an open question. However, our main point that robustly

optimal strategies ignore many information sources remains valid even in general de-

cision problems with larger state spaces. To this end, our main result of this section

provides an upper bound on the number of information sources that are used by an

agent under a robustly optimal strategy. Similar to Corollary 3, this upper bound

depends only on the decision problem at hand, and does not depend on the fine details

of the marginal information sources being observed by the agent.

10Recall that the payoffs here have been weighted by the prior: u(θ, a) = µ0(θ)ρ(θ, a).
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To state our upper bound, we first examine the structure of the interim value

function associated with the decision problem. Recall that a decision problem is a

tuple Γ ≡ (Θ, µ0, A, ρ) with a finite state space Θ, a prior µ0 ∈ ∆Θ, a finite action

space A, and a utility function ρ : Θ × A → R. For a given decision problem, the

corresponding interim value function, v : ∆(Θ) → R, is defined as

v(µ) := max
a∈A

∑
θ∈Θ

µ(θ)ρ(θ, a).

Given a value function v : ∆(Θ) → R, its epigraph is defined as epi(v) = {(µ,w) :
w ≥ v(µ), µ ∈ ∆(Θ)}. It can be easily seen that the set of extreme points of the epi-

graph, denoted by ext(epi(v)), is finite and contains {(δ1, v(δ1)), ..., (δn, v(δn))}, where
δi denotes the Dirac measure on θi. We call the elements of ext(epi(v)), excluding

those degenerate points (δi, v(δi)), the kinks of v.11 Thus, the number of kinks of v is

|ext(epi(v))| − |Θ|. See Figure 5 for an illustration when |Θ| = 2 and |A| = 3. Each

dashed line denotes the agent’s interim payoff from an action, and their upper enve-

lope (in red) is the interim value function. The shaded area represents the epigraph

and the blue dots are the kinks.

v(µ)

0 µ1

Figure 5: Interim value function and kinks

The following theorem provides a bound on the number of experiments that a

agent would need, which is the number of kinks of the corresponding interim value

function.

11Similar approaches have appeared in Bergemann, Brooks, and Morris (2015) and Lipnowski and
Mathevet (2017), where these objects are called “extremal markets” or “outer points.”
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Theorem 3. Consider any decision problem whose corresponding interim value func-

tion has k kinks. For any collection of experiments {Pj}mj=1, there exists a subset of

marginal experiments {Pj}j∈J⊆{1,...,m} with |J | ≤ k, such that

V (P1, ..., Pm) = V ({Pj}j∈J).

Proof. See Appendix A.5.

Remark. 1. Theorem 3, along with (1), implies that there always exists a correla-

tion among the information sources such that the marginal value of information

sources outside J are all 0. This suggests that ignorance of information can also

be rationalized by a Bayesian agent with a subjective correlation structure that

is unobserved by an analyst.

2. It is easy to see that multiplying the utilities by a constant does not change

the set of robustly optimal strategies. Consequently, Theorem 3 shows that a

robustly optimal strategy attends to at most k information sources even when

the stakes of the problem are arbitrarily large.

The full proof of Theorem 3 is deferred to the Appendix, but here we sketch

the main steps. By the minmax theorem, it suffices to examine Nature’s minmax

problem:

V (P1, . . . Pm) = min
P∈J (P1,...,Pm)

V (P ).

By Lemma 2, Nature’s minmax problem can be relaxed into choosing an experiment

among the set of all experiments that Blackwell dominate P1, ..., Pm. According to

Blackwell’s theorem (Theorem 1 in Blackwell (1953)), this is equivalent to choosing a

posterior distribution that is a mean-preserving spread of the posterior distributions

induced by P1, ..., Pm.

Next, note that the interim value function is convex and piecewise linear. More-

over, the “kinks” are the extreme points of those linear faces. Any non-extreme point

in those linear faces can be expressed as a convex combination of extreme points.

Thus, we can apply a mean-preserving spread to take any belief into extreme points

while leaving the expected payoff unchanged. This allows us to further simplify Na-

ture’s minmax value, by restricting attention to those experiments whose induced

posterior distributions are supported on the extreme points. This set can be charac-

terized by a k-dimensional polytope, where k is the number of kinks.
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Now Nature’s problem can be written as a k-dimensional linear program with k

effective constraints. These k effective constraints must come from at most k marginal

experiments. Consequently, the value of the problem is the same as the value of the

problem with k experiments. Hence, the agent need not use more than k experiments.

The bound in Theorem 3 is based on the number of kinks of the interim value

function, which may be hard to calculate when there are more than three states. The

next corollary provides a bound that depends only on |Θ| and |A|. The key idea is

that by the Upper Bound Theorem for polytopes, the maximum number of kinks can

be derived as a function of the number of facets of the epigraph, which in turn is

connected to the number of actions.

Corollary 4. Consider any decision problem. For any collection of experiments

{Pj}mj=1, there exists a subset of marginal experiments {Pj}j∈J⊆{1,...,m} with

|J | ≤

(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)
− 2|Θ|,

such that

V (P1, ..., Pm) = V ({Pj}j∈J).

Proof. See Appendix A.6.

Remark. 1. When |Θ| = 2, this bound reduces to |A| − 1, the bound given in

Corollary 3;

2. The bounds in both Theorem 3 and Corollary 4 depend only on the decision

problem. Therefore, as m grows large, the above theorem tells us that there

exists a sequence of robustly optimal strategies for which the fraction of infor-

mation sources that are ignored converges to 1.

Theorem 3 suggests one may ignore information sources due to robustness con-

cerns. The following proposition further provides a sufficient condition for information

to be ignored: if an information source Pm is not the best information source among

{Pj}mj=1 for any decision problem, then it can be safely ignored in a robustly optimal

strategy.
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Proposition 1. Suppose that V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)) for all de-

cision problems (A, u). Then, for any decision problem (A′, u′),

V (P1, ..., Pm; (A
′, u′)) = V (P1, ..., Pm−1; (A

′, u′)).

Proof. See Appendix B.1.

The condition in Proposition 1 is weaker than Pm being Blackwell dominated

by one of the other experiments P1, ..., Pm−1, because the experiment that outper-

forms Pm may depend on the particular decision problem (A, u). As shown in Cheng

and Börgers (2024), this condition is equivalent to Pm being dominated by a convex

combination of P1, ..., Pm−1. This characterization will be useful in our proof.12

Similar to Corollary 2, this proposition highlights a sense in which it is beneficial

to gather information from multiple information sources that are specialized: the

agent prefers to pay attention only to those information sources that perform the

best in isolation in some decision problem.

6 Discussion

This section discusses some extensions of our model. Section 6.1 discusses the im-

plications of additional knowledge about the correlation structure. Section 6.2 shows

that Theorem 1 extends to scenarios where the agent has even less knowledge about

the information sources— introducing an additional layer of ambiguity regarding the

marginal experiments. Section 6.3 considers the case where the information sources

available to the agent have already been processed by experts.

6.1 Knowledge of Correlation

6.1.1 Common Source

A natural underlying reason for multiple sources of information being correlated is

that they are based on a common information source. For instance, financial consul-

tants may base their recommendations on the same dataset, leading to correlations

among their recommendations. If we know that a common information source is the

12In the proof, we established a slightly stronger result than Proposition 1: experiment Pm can
be ignored if it is dominated by all correlation structures among P1, ..., Pm−1.
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only possible channel generating the correlation among information sources, does this

additional knowledge help the agent to restrict the presumed set of correlations? In

other words, what types of correlation structures can be rationalized by sharing a

common source?

Formally, we say a joint experiment P ∈ J (P1, ..., Pm) is rationalizable by a com-

mon source if there exists Q : Θ → ∆X and a collection, {γj : X → ∆(Yj)}j, such
that

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ).

The interpretation is that Q is the common but unknown fundamental information

source, and the experiments P1, ..., Pj are generated by independent garblings of sig-

nals from Q.

An immediate observation is that every P ∈ J (P1, ..., Pm) is rationalizable by a

common source. This can be seen by letting the common source Q be P itself, and

the garblings γj be the deterministic functions that project each vector y1, ..., ym onto

yj. Therefore, this additional knowledge does not exclude any possible correlation.

6.1.2 Partial Knowledge of Correlations

In certain situations, an agent may understand the correlation among some informa-

tion sources, even if they do not comprehend all of them. For example, in medical

diagnoses, older technologies such as X-rays and MRI have well-understood correla-

tions. On the other hand, newer technologies, such as genetic sequencing, may have

correlations with these traditional tests that are not yet fully understood.

In the context of our model, such knowledge can be modeled as imposing additional

constraints on the set of conceived joint experiments J (P1, ..., Pm). A simple case in

which our results extend in a straightforward manner is the following: Suppose that

there is a partition, Π = {S1, . . . , Sk}, of {1, 2, . . . ,m} such that for all S ∈ Π, the

agent knows that joint distribution over signals in S is given by:∑
y−S

P (yS, y−S|θ) = PS(yS|θ).

26



Then the set of conceived information structures is given by:P ∈ J (P1, . . . , Pm) :
∑
y−S

P (yS, y−S|θ) = PS(yS|θ), ∀θ, S ∈ Π, yS ∈ YS

 .

But note that we could treat each joint experiment, PS1 , . . . , PSk
, as separate marginal

experiments, and then our analysis extends in a straightforward manner to this envi-

ronment.

However, our analysis does not immediately extend to other more complex situa-

tions. In particular, when the knowledge on the correlations span across non-disjoint

subsets, the set of possible joint experiments can no longer be treated by replacing a

subset of experiments with a single experiment, and our existing results no longer ap-

ply. To illustrate, suppose there are three information sources, {P1, P2, P3}, and that

the agent knows that P1 and P2 are correlated according to P12 : Θ → ∆(Y1 × Y2),

and that P2 and P3 are correlated according to P23 : Θ → ∆(Y2 × Y3). The set of

feasible joint experiments would beP : Θ → ∆(Y1 × Y2 × Y3)

∣∣∣∣∣∣∣
∑
y3

P (y1, y2, y3|θ) = P12(y1, y2|θ), ∀θ, y1, y2∑
y1

P (y1, y2, y3|θ) = P23(y2, y3|θ), ∀θ, y2, y3

 .

An interesting direction for future research would be to consider general restrictions

on the set of correlation structures derived from a causality diagram (see Pearl (2009)

and Spiegler (2016)).

6.2 Ambiguity about Marginals

Our model so far assumes that the agent understands each information source pre-

cisely; that is, she knows Pj for j = 1, ...,m. In this section, we extend our model to

allow for additional ambiguity about the marginal information sources.

Let Pj denote the set of possible marginal experiments for information source

j = 1, ...,m. Let all Pj ∈ Pj have the same finite signal space Yj. In addition, each Pj

is assumed to be convex. That is, if Pj : Θ → ∆(Yj) and P ′
j : Θ → ∆(Yj) are both in

Pj, then for any λ ∈ (0, 1), Qλ : Θ → ∆(Yj) defined as θ 7→ λPj(·|θ) + (1− λ)P ′
j(·|θ)

is also in Pj.
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The agent conceives of the following set of joint experiments:

J (P1, ...,Pm) =

{
P : Θ → ∆(Y) : ∃Pj ∈ Pj,

∑
−j

P (y1, . . . , ym|θ) = Pj(yj|θ) for all θ, j, yj

}
.

The agent’s decision problem is similarly defined:

V (P1, . . . ,Pm) := max
σ:Y→∆(A)

min
P∈J (P1,...,Pm)

∑
θ∈Θ

∑
y∈Y

P (y|θ)u(θ, σ(y)).

We show that the prediction in Theorem 1 is robust to this additional layer of

ambiguity.

Proposition 2. For all (A, u) with |A| = |Θ| = 2,

V (P1, . . . ,Pm) = max
j=1,...,m

V (Pj).

Proof. See Appendix B.2.

6.3 Aggregating Experts’ opinions

In certain instances, an agent may not have the expertise to process raw information

sources. Instead, she may rely on experts who understand the information sources

to offer their opinions, such as in the form of beliefs (e.g., doctors offering beliefs

on the likelihood of a successful surgery) or action recommendations (e.g., financial

consultants providing investment recommendations).

Reporting beliefs and offering action recommendations can both be viewed as

garblings of the original, raw information sources. For any given information source

Pj : Θ → ∆(Yj), we call the induced belief information structure, denoted by

BPj
: Θ → ∆(Θ), as the information structure derived by garbling each signal into the

corresponding induced beliefs. In addition, we call the induced recommendation in-

formation structure, denoted by RPj
: Θ → ∆A, as the information structure derived

by a garbling σ∗
j , given by an optimal strategy:

σ∗
j ∈ argmax

σj :Yj→A

∑
θ,yj

Pj(yj|θ)u(θ, σj(yj)).

Note that, in contrast to the belief information structure, the recommendation infor-
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mation structure depends on the decision problem.

When the agent has access to only a single source of information, compressing

the information through reporting beliefs or action recommendations does not hurt

the agent, that is, V (Pj) = V (BPj
) = V (RPj

) for any j. This is because beliefs

and action recommendations already contain all the information needed to make an

optimal decision.

When multiple information sources are available, garbling information by report-

ing only beliefs or recommendations could potentially hurt payoffs because some of

the lost information, which is not useful on its own, could become valuable when

combined with other sources. This begs the question of whether the agent could still

achieve the same value as if she had access to the raw information sources. In other

words, does

V (P1, ..., Pm) = V (BP1 , ..., BPm) = V (RP1 , ..., RPm)

hold when m > 1?

First, it is indeed the case that V (P1, ..., Pm) = V (BP1 , ..., BPm): since Pj is

Blackwell equivalent to BPj
for all j, Lemma 2 implies the values V (P1, ..., Pm)

and V (BP1 , ..., BPm) must be equal. The relationship between V (RP1 , ..., RPm) and

V (P1, ..., Pm) is more interesting: when |Θ| = 2, these values coincide, but in general,

we could have V (RP1 , ..., RPm) < V (P1, ..., Pm).

Proposition 3. When |Θ| = 2, for any (A, u),

V (P1, ..., Pm) = V (RP1 , ..., RPm).

Proof. See Appendix B.3.

When there are three or more states, the recommendation information structure

could generate a strictly lower value than the raw information structure. This can be

seen by revisiting Example 2. Recall that in the example, under both PX and PY ,

a = 1 is the unique optimal action to any signal realization. Therefore, both RPX

and RPY
are uninformative experiments, and so V (RPX

, RPY
) = 1−0.9+1 = 1.1. By

contrast, the agent obtains perfect information when observing the raw information

structures, and thus V (PX , PY ) = 1 + 0 + 1 = 2 > V (RPX
, RPY

).
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7 Conclusion

We have shown how concerns about correlations could lead the agent to disregard

seemingly relevant information. The most striking result emerges when there are

only two states and two actions: the agent must rely on a single information source,

ignoring all others. Moreover, binary-state binary-action decision problems serve as

building blocks for any general binary-state decision problem, enabling us to explicitly

characterize the robustly optimal strategies. Such strong results come with the strong

binary-state assumption, which certainly restricts their applicability. Nevertheless,

there are interesting settings where the uncertainty can be naturally modeled with

two states, such as in simple hypothesis testing, disease diagnoses, and presidential

elections.

With more than two states, we do not have a closed-form characterization of the

optimal strategy, but we establish a bound on the number of information sources

that are used. Crucially, this bound depends only on the decision problem and does

not depend on the number of information sources or their specific details. Thus,

the bound specifies a limit to the addition of relevant information sources—at some

point, any new relevant information source introduced will necessarily make at least

one existing source redundant.

Aside from providing normative guidelines for constructing robust strategies, our

findings offer an alternative explanation for the ignorance of information, which has

distinct implications compared to existing explanations. For example, in models of

rational inattention (see Maćkowiak, Matějka, and Wiederholt (2023) for a survey),

more information is acquired and used when stakes are raised. In contrast, in our

model, multiplying the utility function by any constant does not alter the set of

information sources attended to. This distinction may help explain the ignorance of

information even in high-stakes decision problems.13

Throughout the paper, we have interpreted our model as applying to situations

where the agent lacks information about the correlation among sources. An alterna-

tive interpretation is that this information is available, but the agent lacks the mental

capacity to utilize this information. Indeed, there is empirical evidence that people of-

ten make mistakes when trying to use information about correlations—a phenomenon

13For example, Olver et al. (2020) found in a study that only 16.1% percent of patients sought a
second opinion about their cancer treatment.
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known as correlation neglect (see, e.g., Enke and Zimmermann (2019)). A sophisti-

cated agent who is aware of their potential bias might try to protect themselves by

robustly optimizing.

Our analysis leaves open some interesting questions. As discussed in Section 6.1

and Section 6.2, other sets of joint experiments can be conceived. Investigating such

alternatives could give insight into what kinds of information are more or less valuable

depending on the kind of ambiguity present. In addition, our paper does not make

any assumptions about the marginal experiments. In certain applications, parametric

assumptions might be natural, such as assuming Gaussian distributions. This extra

structure could allow reaching stronger conclusions. Lastly, in networks, agents’ ac-

tions are influenced by observing their neighbors, creating a complex interdependence

shaped by the network structure. It seems natural to model agents as robust opti-

mizers in such environments where the correlation among sources is important, but

difficult to determine.
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A Appendix

A.1 Proof of Lemma 2

Proof. It suffices to show that for anyQ ∈ D(P1, ..., Pm), there exists P ∈ J (P1, ..., Pm)

such that P is Blackwell dominated by Q.

Take any Q ∈ D(P1, ..., Pm) and let X be the signal space of Q. By Blackwell’s

Theorem, there exist γj : X → ∆Yj such that for each j,

Pj(yj|θ) =
∑
x

γj(yj|x)Q(x|θ).

Define the following joint Blackwell experiment P : Θ → ∆(Y1 × ...× Ym):

P (y1, ..., ym|θ) =
∑
x

m∏
j=1

γj(yj|x)Q(x|θ).

Clearly, P ∈ J (P1, ..., Pm) because
∑

y−j
P (y1, ..., ym|θ) =

∑
x γj(yj|x)Q(x|θ) =

Pj(yj|θ). Moreover,
∏m

j=1 γj(yj|x) defines a garbling, so P is Blackwell Dominated by

Q.

A.2 Proof of Lemma 3

Proof. To reduce notation, let’s write EP [uℓ(θ, σℓ)] =
∑

θ,y uℓ(θ, σℓ(y))P (y|θ). Since
σ = (σℓ)

k
ℓ=1 is a feasible strategy,

V

(
P1, . . . , Pm;

k⊕
ℓ=1

(Aℓ, uℓ)

)
≥ min

P∈J (P1,...,Pm)

k∑
ℓ=1

EP [uℓ(θ, σℓ)]

≥
k∑

ℓ=1

min
P∈J (P1,...,Pm)

EP [uℓ(θ, σℓ)]

=
k∑

ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ)).
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Moreover, by Theorem 1 and Corollary 1,

k∑
ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ)) =
k∑

ℓ=1

V (P (P1, ..., Pm); (Aℓ, uℓ))

= V

(
P (P1, . . . , Pm);

k⊕
ℓ=1

(Aℓ, uℓ)

)

≥ V

(
P1, . . . , Pm;

k⊕
ℓ=1

(Aℓ, uℓ)

)
.

Together, these inequalities prove our claim that

V

(
P1, . . . , Pm;

k⊕
ℓ=1

(Aℓ, uℓ)

)
=

k∑
ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ))

and that σ is a robustly optimal strategy.

A.3 Proof of Lemma 4

Proof. Consider the binary decomposition
⊕n−1

ℓ=1 (Aℓ, uℓ). We prove that for any δ ∈
{0, 1}n−1,

∑n−1
ℓ=1 δℓuℓ(·, 1) ∈ H(A, u).

Suppose, by way of contradiction, that there exists δ ∈ {0, 1}n−1 for which u∗ :=∑n−1
ℓ=1 δℓuℓ(·, 1) /∈ H(A, u). SinceH(A, u) is convex and closed, we can strictly separate

it from the singleton u∗(Corollary 11.4.2 of Rockafellar (1970)), i.e. there exists

λ ∈ R2 \ {(0, 0)} such that

λ · u∗ > sup
v∈H(A,u)

λ · v. (6)

Note that λ ≥ 0 since otherwise supv∈H(A,u) λ · v = +∞.

From the ordering of the actions and the binary decomposition, uℓ(θ2, 1)/uℓ(θ1, 1)

is decreasing in ℓ. Therefore, for any ℓ′ > ℓ,

λ · uℓ(·, 1) ≤ 0 =⇒ λ · uℓ′(·, 1) ≤ 0.

So there exists ℓ∗ such that λ · uℓ(·, 1) > 0 for ℓ < ℓ∗ and λ · uℓ(·, 1) ≤ 0 for ℓ ≥ ℓ∗.
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Thus

max
δ′∈{0,1}n−1

n−1∑
ℓ=1

λ · δ′
ℓuℓ(·, 1)

is solved by choosing δ′
ℓ = 1 for ℓ < ℓ∗ and δ′

ℓ = 0 for ℓ ≥ ℓ∗. Hence

λ · u(·, aℓ∗) = λ ·
ℓ∗−1∑
ℓ=1

uℓ(·, 1) ≥ λ ·
n−1∑
ℓ=1

δℓuℓ(·, 1) = λ · u∗.

But u(·, aℓ∗) ∈ H(A, u), contradicting (6).

A.4 Proof of Theorem 2

Proof. From Lemma 4, (A, u) is equivalent to
⊕n−1

ℓ=1 (Aℓ, uℓ), so

V (P1, ..., Pm; (A, u)) = V

(
P1, ..., Pm;

n−1⊕
ℓ=1

(Aℓ, uℓ)

)
=

n−1∑
ℓ=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ)),

where the second equality follows from Lemma 3. This establishes the first statement

of the theorem.

For each y,
∑n−1

ℓ=1 uℓ(·, σℓ(y)) ∈ H
(⊕n−1

ℓ=1 (Aℓ, uℓ)
)

= H(A, u). So there exists
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σ∗(y) such that u(·, σ∗(y)) ≥
∑n−1

ℓ=1 uℓ(·, σℓ(y)). Now for any P ∈ J (P1, ..., Pm),

EP [u(θ, σ∗(y))] ≥ EP

[
n−1∑
ℓ=1

uℓ(θ, σℓ(y))

]

= V

(
P1, ..., Pm;

n−1⊕
ℓ=1

(Aℓ, uℓ)

)
= V (P1, ..., Pm; (A, u))

where the second line follows from Lemma 3 and the third line follows from Lemma 4.

So σ∗ is a robustly optimal strategy.

A.5 Proof of Theorem 3

We shall start with some preliminary definitions and lemmas.

A.5.1 Definitions

For a Blackwell experiment P : Θ → ∆Y , the induced posterior distribution τP ∈
∆(∆(Θ)) is defined as

τP (µ) =
∑
y∈Yµ

∑
θ

µ0(θ)P (y|θ)

where

Yµ =

{
y ∈ Y

∣∣∣ µ0(θ)P (y|θ)∑
θ µ0(θ)P (y|θ)

= µ(θ),∀θ
}
.

Since we assume that Y is finite, τP will always have a finite support. For convenience,

when we sum over µ a term that multiplies τP (µ), it is to be understood that the

sum is over the support of τP .

For each a ∈ A, let

Ma =

{
µ ∈ ∆(Θ)

∣∣∣∣∣∑
θ

µ(θ)ρ(θ, a) ≥
∑
θ

µ(θ)ρ(θ, a′) for all a′ ∈ A

}

denote the set of beliefs that action a best responds to. It is easy to check that Ma

is convex, compact, and has finitely many extreme points. Let Ea = ext (Ma).

Given an interim value function v : ∆(Θ) → R, let E denote the projection of

ext(epi(v)) on ∆(Θ).
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A.5.2 Lemmas

Lemma 5. For every a, Ea ⊆ E.

Proof. Suppose, by contradiction, that there exist some a and µ ∈ Ea \ E. Since

µ /∈ E, there exist (µ′, w′), (µ′′, w′′) ∈ epi(v) and λ ∈ (0, 1) such that µ′ ̸= µ′′, and

(µ, v(µ)) = λ(µ′, w′) + (1− λ)(µ′′, w′′).

Note that (µ, v(µ)) is a boundary point of epi(v), so by the supporting hyperplane

theorem, there exist h ∈ R|Θ|, and c ∈ R such that

h · (µ, v(µ)) = c and h · (µ̂, ŵ) ≥ c, ∀(µ̂, ŵ) ∈ epi(v).

Moreover, the last coordinate of h must be positive, because epi(v) is not bounded

above in its last dimension.

Now we claim that both (µ′, w′) and (µ′′, w′′) must be on this supporting hyper-

plane. That is, h · (µ′, w′) = h · (µ′′, w′′) = c. Otherwise, if either h · (µ′, w′) > c

or h · (µ′′, w′′) > c, we have h · (µ, v(µ)) = λh · (µ′, w′) + (1 − λ)h · (µ′′, w′′) > c, a

contradiction.

Moreover, since the last element of h is positive, we must have w′ = v(µ′) and

w′′ = v(µ′′), otherwise h · (µ, v(µ)) > λh · (µ′, v(µ′)) + (1− λ)h · (µ′′, v(µ′′)) ≥ c, again

a contradiction.

Now we have v(µ) = λv(µ′) + (1 − λ)v(µ′′). By the definition of v, v(µ′) ≥∑
θ µ

′(θ)ρ(θ, a) and v(µ′′) ≥
∑

θ µ
′′(θ)ρ(θ, a). So v(µ) ≥ λ

∑
θ µ

′(θ)ρ(θ, a) + (1 −
λ)
∑

θ µ
′′(θ)ρ(θ, a)) =

∑
θ µ(θ)ρ(θ, a) = v(µ). This means that v(µ′) =

∑
θ µ

′(θ)ρ(θ, a)

and v(µ′′) =
∑

θ µ
′′(θ)ρ(θ, a), which implies µ′, µ′′ ∈ Ma. This contradicts the assump-

tion that µ ∈ Ea and concludes the proof.

Given a finite collection of Blackwell experiments P1, ..., Pm, recall thatD(P1, ..., Pm)

denotes the set of Blackwell experiments that dominate P1, ..., Pm. Let E denote the

set of all experiments with the induced posterior distribution supported in E and

E(P1, ..., Pm) = D(P1, ..., Pm) ∩ E denote the set of experiments that are more infor-

mative than P1, . . . , Pm and have their support in E.

Lemma 6. For any experiment P , there exists Q ∈ E(P ) such that V (P ) = V (Q).
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Proof. Given a belief µ, let a be an action such that µ ∈ Ma. Thus µ can be written

as a convex combination of points in Ea = ext (Ma), as∑
ν∈Ea

γ(ν|µ)ν = µ.

This defines a mean-preserving spread γ : ∆(Θ) → ∆(∆(Θ)) satisfying the property

that beliefs in Ma are taken to beliefs still in Ma. Now let Q be an experiment such

that τQ is a mean-preserving spread of τP through γ, that is,

τQ(ν) =
∑
µ

γ(ν|µ)τP (µ).

By Theorem 1 in Blackwell (1953), Q ∈ D(P ) and since Q has its support in E,

we have that Q ∈ E(P ). It remains to show that V (P ) = V (Q). Notice that, for each

action a ∈ A, v is linear within Ma. Thus

V (P ) =
∑
µ

τP (µ)v(µ)

=
∑
µ

τP (µ) v

(∑
ν∈E

γ(ν|µ)ν

)
=
∑
µ

τP (µ)
∑
ν∈E

γ(ν|µ)v(ν)

=
∑
ν∈E

∑
µ

τP (µ)γ(ν|µ)v(ν)

=
∑
ν∈E

τQ(ν)v(ν)

= V (Q).

Lemma 7.

V (P1, ..., Pm) = min
P∈∩m

j=1E(Pj)
V (P )

Proof. First note that, by Lemma 2

V (P1, ..., Pm) = min
P∈D(P1,...,Pm)

V (P ) ≤ min
Q∈E(P1,...,Pm)

V (Q)
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since E(P1, ..., Pm) ⊆ D(P1, ..., Pm). By Lemma 6, for any P ∈ D(P1, ..., Pm), there

exists a Q ∈ E(P ) ⊆ E(P1, ..., Pm) with V (P ) = V (Q), so the inequality above must

actually be an equality. The proof is concluded by noting that

E(P1, ..., Pm) = D(P1, ..., Pm) ∩ E = ∩m
j=1D(Pj) ∩ E = ∩m

j=1 (D(Pj) ∩ E) = ∩m
j=1E(Pj).

For any belief µ ∈ ∆(Θ), let

N(µ) =

η ∈ RE

∣∣∣∣∣∣
∑
ν∈E

η(ν)ν = µ

η ∈ ∆(E)


be the set of distributions that spread the belief µ into points in E. Since the con-

straints that define N(µ) are linear and ∆(E) is bounded, N(µ) is a polytope.

Given an experiment P , we define NP as the τP -weighted Minkowski sum of N(µ):

NP =
∑
µ

τP (µ)N(µ).

Note that NP is also a polytope in RE.

Lemma 8. Let Q ∈ E. Then Q ∈ E(P ) if and only if
(
τQ(ν)

)
ν∈E ∈ NP .

Proof. Q ∈ E(P ) if and only τQ is a mean-preserving spread of τP , i.e., there exists

an η : supp(τP ) → ∆E, such that, for any µ ∈ supp(τP ) and ν ∈ E,

µ =
∑
ν∈E

η(ν|µ)ν (7)

τQ(ν) =
∑
µ

η(ν|µ)τP (µ). (8)

Condition (7) corresponds to the requirement that η(·|µ) ∈ N(µ). Thus, saying

that τQ is a mean-preserving spread of τP is equivalent to saying that there exist

η(·|µ) ∈ N(µ) such that (8) holds for all ν or, in other words,
(
τQ(ν)

)
ν∈E ∈ NP .

The set E includes the extreme points of the simplex itself, ext (∆(Θ)); the re-

maining elements belong to the set of “kinks” K. We now show that a measure with

support in E is uniquely determined by its values on K.
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Lemma 9. Let η, η′ ∈ N(µ) be such that η(ν) = η′(ν) for all ν ∈ K. Then η = η′.

Proof. By definition, E\K = ext (∆(Θ)) = {δθ|θ ∈ Θ}, where δθ is the Dirac measure

putting probability one on the state θ. Given θ ∈ Θ, we have

µ(θ) =
∑
ν∈E

η(ν)ν(θ) =
∑
ν∈K

η(ν)ν(θ) + η (δθ) .

Thus, if η(ν) = η′(ν) for all ν ∈ K, we must have η(δθ) = η′(δθ) for all θ ∈ Θ, so

η = η′.

Now let Z(µ) be the projection of N(µ) on RK , so ZP is also the projection of

NP on RK . As the projection of a polytope, ZP is also a polytope and we can write

ZP =
∑
µ

τP (µ)Z(µ).

The following lemma shows that E(P ) is characterized by ZP .

Lemma 10. Let Q ∈ E. Then Q ∈ E(P ) if and only if
(
τQ(ν)

)
ν∈K ∈ ZP .

Proof. By Lemma 8, Q ∈ E(P ) if and only if
(
τQ(ν)

)
ν∈E ∈ NP , that is, there exist

η(·|µ) ∈ N(µ) for each µ in the support of τP such that

τQ(ν) =
∑
µ

τP (µ)η(ν|µ) ∀ν ∈ E.

Clearly, if this holds, then
(
τQ(ν)

)
ν∈K ∈ ZP , by definition of ZP . Now suppose that(

τQ(ν)
)
ν∈K ∈ ZP , that is, there exist η′(·|µ) ∈ Z(µ) such that

τQ(ν) =
∑
µ

τP (µ)η′(ν|µ) ∀ν ∈ K.

By Lemma 9, for each µ there is a unique η(·|µ) ∈ N(µ) whose projection in RK

is η′(·|µ). Thus τQ(ν) =
∑

µ τ
P (µ)η(ν|µ) for all ν ∈ K and applying Lemma 9 to(

τQ(ν)
)
ν∈E ∈ N(µ0), we conclude that this equality must hold for all ν ∈ E, so that(

τQ(ν)
)
ν∈E ∈ NP .

Proof of Theorem 3. Let k = |K|. Our goal is to show that there is a robustly optimal
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strategy using at most k experiments. By Lemma 7,

V (P1, ..., Pm) = min
P∈∩m

j=1E(Pj)
V (P )

Given an experiment Q, we define τQK := (τQ(ν))ν∈K and τQ(δθ) =
[
µ0(θ) −∑k

ℓ=1 τ
Q(νℓ)ν(θ)

]
. By Lemma 10, the problem can be written as

V (P1, ..., Pm) = min
τQK∈

m⋂
j=1

ZPj

(∑
ν∈K

τQ(ν)v(ν) +
∑
θ∈Θ

τQ(δθ)v(δθ)

)
(9)

Since each ZPj is a polytope, so is their intersection, which is also non-empty

because a fully informative information structure is always in E(Pj). Moreover, the

objective function is affine in τQK ∈ RK , so (9) can be written as a linear program:

V (P1, ..., Pm) = max
x∈Rk

c · x+ constant

s.t. Ax ≤ b,
(10)

for some c ∈ Rk. Because the set of constraints is non-empty and bounded, the

problem has a solution x∗.

Now, from a standard observation in linear programming (see Lemma 15 in Ap-

pendix B.4), we can keep only k effective constraints in the k dimensional linear

program (10), without affecting the value of the problem. Let I ⊆ {1, ..., N} be an

index set of these effective constraints, with |I| = k. Let A[I] denote the k × k sub-

matrix of A with the rows in I. Similarly, let b[I] denote the k×1 subvector of b with

the rows in I. Then we have

V (P1, ..., Pm) = max c · x+ constant

s.t. A[I]x ≤ b[I].

Each constraint comes from some ZPj . Since we have k constraints, there is a set

J ⊆ {1, . . . ,m} with |J | ≤ k such that every constraint comes from a ZPj with j ∈ J .

Not all constraints associated with each ZPj are present in this linear program, but

adding them back does not alter the value. This means that the problem can be
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reformulated back to

min
τQK∈

⋂
j∈J

ZPj

(∑
ν∈K

τQ(ν)v(ν) +
∑
θ∈Θ

τQ(δθ)v(δθ)

)
= V ({Pj}j∈J).

Therefore, V (P1, ..., Pm) = V ({Pj}j∈J).

A.6 Proof of Corollary 4

Proof. Recall that epi(v) = {(µ,w) ∈ ∆(Θ) × R | w ≥ v(µ)}. Let n = |Θ|. We can

represent epi(v) as a polyhedron in Rn that is the intersection of |A|+ |Θ| halfspaces,
as follows:(µ1, . . . , µn−1, w) ∈ Rn

∣∣∣∣∣∣∣
w ≥

∑n−1
i=1 µiρ(θi, a) + (1−

∑n−1
i=1 µi)ρ(θn, a) ∀a ∈ A

µi ≥ 0 i = 1, . . . , n− 1

µ1 + · · ·+ µn−1 ⩽ 1

 .

Here, we simply replaced the set ∆(Θ) by its first n − 1 coordinates; the original

element µ ∈ ∆(Θ) can be recovered by µn = 1 − µ1 − · · · − µn−1, so this change

is inconsequential. In this representation, we have |A| halfspaces corresponding to

the constraints w ≥
∑

θ∈Θ µ(θ)ρ(θ, a) and |Θ| = n constraints corresponding to the

description of ∆(Θ).

This polyhedron is unbounded. To bound it, we also intersect epi(v) with an

additional halfspace, creating a bounded polytope B = epi(v) ∩ {(µ,w) : w ≤
maxθ,a u(θ, a) + 1}, which has at most |A|+ |Θ|+ 1 facets.

The Upper Bound Theorem (see Theorem 8.23 in Ziegler (2012)) gives an upper

bound on the number of facets that a polytope with a given number of vertices can

have. Every polytope has a dual polytope (see Section 3.4 in Grünbaum (2003)),

where each vertex corresponds to a facet and each facet corresponds to a vertex.

Thus, we can apply the Upper Bound Theorem to the dual of B, which implies B

can have at most(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)

number of vertices.
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These vertices include {(δi, v(δi))}ni=1 and {(δi,maxθ,a u(θ, a)+1)}ni=1, which means

the number of kinks can be no more than(
|Θ|+ |A|+ 1−

⌊
|Θ|+1

2

⌋
|A|+ 1

)
+

(
|Θ|+ |A|+ 1−

⌊
|Θ|+2

2

⌋
|A|+ 1

)
− 2|Θ|.
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B Online Appendix

B.1 Proof of Proposition 1

To prove the proposition, it is useful to introduce the “dominated by a convex com-

bination” notion in Cheng and Börgers (2024). Let {P1, ..., Pk} be a collection of

Blackwell experiments, with disjoint signal spaces Y1, ..., Yk. A convex combination of

these Blackwell experiments, denoted by
⊕k

j=1 αjPj, is a single Blackwell experiment

with a signal space Y1 ∪ · · · ∪ Yk:

k⊕
j=1

αjPj(z|θ) = αjPj(z|θ)1z∈Yj

where αj ≥ 0 and
∑

j αj = 1.

The following lemma directly follows from the “if” direction of Proposition 2 in

Cheng and Börgers (2024).

Lemma 11. If for any decision problem (A, u), V (Pm; (A, u)) ≤ maxj=1,...,m−1 V (Pj; (A, u)),

then Pm is Blackwell dominated by a convex combination of {P1, ..., Pm−1}.

The next lemma shows that any convex combination of {P1, ..., Pk} is dominated

by any joint experiments with marginals P1, ..., Pk.

Lemma 12. For any P ∈ J (P1, ..., Pk) and any weights {αj}kj=1, P Blackwell domi-

nates
⊕k

j=1 αjPj.

Proof. For any P ∈ J (P1, ..., Pk), we construct the following garbling: γ : Y1 × ... ×
Yk → ∆(Y1 ∪ · · · ∪ Yk):

γ(y|y1, ..., yk) =

αj if y = yj,

0 otherwise.
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Then for any j and y ∈ Yj,∑
y1,...,yk

γ(y|y1, ..., yk)P (y1, ..., yk|θ) =
∑
y−j

αjP (..., yj−1, y, yj+1...|θ)

= αjP (y|θ)

=
k⊕

j=1

αjPj(y|θ),

so P Blackwell dominates
⊕k

j=1 αjPj.

Proof of Proposition 1. For any decision problem (A, u), let P ∗ be the joint experi-

ment solving

min
P∈J (P1,...,Pm−1)

V (P ; (A, u)).

From Lemma 12 and the transitivity of the Blackwell order, P ∗ dominates Pm. So

there exists γ : Y1 × ...× Ym−1 → ∆Ym such that

Pm(ym|θ) =
∑

y1,...,ym−1

γ(ym|y1, ..., ym−1)P
∗(y1, ..., ym−1|θ).

Now we construct the following Q ∈ J (P1, ..., Pm):

Q(y1, ..., ym|θ) = γ(ym|y1, ..., ym−1)P
∗(y1, ..., ym−1|θ)

which by construction is Blackwell equivalent to P ∗. Therefore,

V (P1, ..., Pm; (A, u)) = min
P∈J (P1,...,Pm)

V (P ; (A, u))

≤ V (Q; (A, u))

= V (P ∗; (A, u))

= V (P1, ..., Pm−1; (A, u))

≤ V (P1, ..., Pm; (A, u))

which proves the proposition.
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B.2 Proof of Proposition 2

Proof. First observe that the agent’s maxmin value is no more than her minmax

value:

V (P1, . . . ,Pm) ≤ min
P∈J (P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))

Now in the minmax problem, Nature’s choice can be split into first choosing each

marginal experiment Pj ∈ Pj, and then choosing a joint experiment P ∈ J (P1, ..., Pm):

= min
Pj∈Pj

j=1,...,m

min
P∈J (P1,...,Pm)

max
σ:Y→∆(A)

∑
θ

∑
y

P (y|θ)u(θ, σ(y))

And the value of the inner minmax problem is exactly V (P1, ..., Pm), which equals

maxj V (Pj) from Theorem 1:

= min
Pj∈Pj

j=1,...,m

max
j=1,...,m

V (Pj)

= max
j=1,...,m

V (Pj)

where P j ∈ argminPj∈Pj
V (Pj) is a worst experiment among the set Pj if the agent

faces this information source solely. Let j∗ ∈ argmaxj V (Pj), and consider the prob-

lem where the decision maker faces only a single set of marginal experiments Pj∗ :

V (Pj∗) = max
σ:Yj∗→∆(A)

min
Pj∗∈Pj∗

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗ |θ)u(θ, σ(y∗j )).

Since Pj∗ is convex, from the minmax theorem, the value of the problem equals

V (Pj∗) = min
Pj∗∈Pj∗

max
σ:Yj∗→∆(A)

∑
θ

∑
yj∗∈Yj∗

Pj∗(yj∗|θ)u(θ, σ(y∗j )) = V (Pj∗).

So there exists a best-source strategy, using only signals from the experiment Pj∗ , that

guarantees the robustly optimal value V (Pj∗) = maxj V (Pj) ≥ V (P1, . . . ,Pm).
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B.3 Proof of Proposition 3

Lemma 13 (Single-Peaked Property). Suppose in a binary-state decision problem

(A, u), every action is a unique best response to some belief, and actions are ordered

as follows

u(θ1, a1) < u(θ1, a2) < · · · < u(θ1, an),

u(θ2, a1) > u(θ2, a2) > · · · > u(θ2, an).

Then, for any belief µ ∈ ∆(Θ),

ai ∈ argmax
a∈A

∑
θ

µ(θ)u(θ, a)

implies that for k > j ≥ i,∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak)

and for k < j ≤ i, ∑
θ

µ(θ)u(θ, aj) ≥
∑
θ

µ(θ)u(θ, ak).

Proof. Suppose by contradiction that there exists k > j ≥ i, such that

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) < µ(θ1)u(θ1, ak) + µ(θ2)u(θ2, ak).

Rearranging, we obtain

µ(θ2)[u(θ2, aj)− u(θ2, ak)] < µ(θ1)[u(θ1, ak)− u(θ1, aj)].

Given that u(θ2, aj)−u(θ2, ak) > 0 and u(θ1, ak)−u(θ1, aj) > 0, the inequality above

still holds if we raise µ(θ1) (and consequently lower µ(θ2)). That is, for any µ′ ∈ ∆(Θ)

such that µ′(θ1) ≥ µ(θ1), we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) < µ′(θ1)u(θ1, ak) + µ′(θ2)u(θ2, ak). (11)
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Since ai is, by definition, a best response for µ,

µ(θ1)u(θ1, aj) + µ(θ2)u(θ2, aj) ≤ µ(θ1)u(θ1, ai) + µ(θ2)u(θ2, ai).

Since u(θ1, aj) ≥ u(θ1, ai) and u(θ2, aj) ≤ u(θ2, ai), for any µ′ ∈ ∆(Θ) such that

µ′(θ1) ≤ µ(θ1), we have

µ′(θ1)u(θ1, aj) + µ′(θ2)u(θ2, aj) ≤ µ′(θ1)u(θ1, ai) + µ′(θ2)u(θ2, ai) (12)

The inequalities (11) and (12) together imply that aj is never a unique best response

to any belief, contradicting our assumption.

The case where k < j ≤ i follows from a similar argument.

Lemma 14. Let (Aℓ, uℓ) be a subproblem in a binary decomposition of (A, u) and let

RPj
be a recommendation information structure with respect to (A, u). Then

V (Pj; (Aℓ, uℓ)) = V (RPj
; (Aℓ, uℓ)).

Proof. Recall that Pj Blackwell dominates RPj
, so V (Pj; (Aℓ, uℓ)) ≥ V (RPj

; (Aℓ, uℓ)).

We prove the result by constructing a recommendation information structure Rℓ
Pj

for

(Aℓ, uℓ) and showing that V (RPj
; (Aℓ, uℓ)) ≥ V (Rℓ

Pj
; (Aℓ, uℓ)) = V (Pj; (Aℓ, uℓ)).

Recall that RPj
is defined using a garbling of Pj given by σ∗ : Yj → A that satisfies,

for each yj in the support,

σ∗(yj) ∈ argmax
a∈A

∑
θ

Pj(yj|θ)u(θ, a).

From Lemma 13, if ai ∈ argmaxa∈A
∑

θ Pj(yj|θ)u(θ, a), for all i ≤ ℓ ≤ n − 1,∑
θ Pj(yj|θ)u(θ, aℓ) ≥

∑
θ Pj(yj|θ)u(θ, aℓ+1), and for all 2 ≤ ℓ ≤ i,

∑
θ Pj(yj|θ)u(θ, aℓ) ≥∑

θ Pj(yj|θ)u(θ, aℓ−1). This means that, if RPj
recommends action ai, then 1 ∈ Aℓ is

optimal for the subproblems with i ⩽ ℓ and 0 ∈ Aℓ is optimal for the subproblems

with i > ℓ. Now let γℓ : A → {0, 1} be the garbling defined by

γℓ(ai) =

0 if i ≤ ℓ

1 if i > ℓ.
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By construction, for each yi in the support,

γℓ(σ
∗(yj)) ∈ argmax

a∈Aℓ

∑
θ,yj

Pj(yj|θ)uℓ(θ, a),

so the experiment Rℓ
Pj
, induced by garbling Pj according to γℓ ◦σ∗ : Yj → A, is a rec-

ommendation information structure for the decision problem (Aℓ, uℓ), so V (Rℓ
Pj
; (Aℓ, uℓ)) =

V (Pj; (Aℓ, uℓ)). Moreover, by construction, RPj
Blackwell dominatesRℓ

Pj
, so V (RPj

; (Aℓ, uℓ)) ≥
V (Rℓ

Pj
; (Aℓ, uℓ)).

Proof of Proposition 3. Let
⊕k

ℓ=1(Aℓ, uℓ) be a binary decomposition of (A, u). From

Theorem 2 and Lemma 14,

V (P1, . . . , Pm; (A, u)) =
k∑

l=1

max
j=1,...,m

V (Pj; (Aℓ, uℓ))

=
k∑

l=1

max
j=1,...,m

V (RPj
; (Aℓ, uℓ))

= V (RPj
, . . . , RPj

; (A, u)).

B.4 Effective Constraints in Linear Programming

The following lemma, which we use in the proof of Theorem 3, states that a k-

dimensional linear programming problem has at most k effective constraints.

Lemma 15. Consider a feasible and bounded linear programming problem

V = max
x∈Rk

c · x

s.t. Ax ≤ b

where c ∈ Rk and A is an m× k matrix with rank k, and b is an m× 1 vector. There

exists a full-rank k × k submatrix Ã of A with the corresponding k × 1 subvector b̃

such that

V = max
x∈Rk

c · x
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s.t. Ãx ≤ b̃

Proof. The dual problem of the linear programming problem is

V = min
y∈Rm

b · y

s.t. yTA = c

y ≥ 0

From Lemma 4.6 and Theorem 4.7 of Vohra (2004), a solution to this dual problem

is a basic feasible solution, so there exists a full-rank k × k submatrix Ã of A with

the corresponding k × 1 subvector b̃ such that

V = min
y∈Rk

b̃ · y

s.t. yT Ã = c

y ≥ 0

Taking the dual again, we have

V = max
x∈Rk

c · x

s.t. Ãx ≤ b̃.

B.5 Proof of Uniqueness for Theorem 1

Consider any binary-state binary-action decision problem, denoted by (Abi, ubi). With-

out loss of generality, suppose P1 is the unique best marginal information source:

V (P1; (A
bi, ubi)) > V (Pj; (A

bi, ubi)) for j ̸= 1.

B.5.1 Payoff Sets

Recall that as in Section 4.3, any binary-state decision problem (A, u) induces a payoff

polyhedron:

H(A, u) = co{u(·, a) : a ∈ A} − R2
+,
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which captures the feasible payoff vectors that can be achieved by the decision maker

when allowing for free disposal of utils. Such a polyhedron is upper bounded, convex,

closed, and has a finite number of extreme points.

Definition 8. A non-empty subset D ⊆ R|Θ| is a payoff set if D is upper bounded,

convex, closed, and has a finite number of extreme points.

For any payoff set D, we define the robustly optimal value in a manner similar to

that for decision problems:

W (P1, ..., Pm;D) = max
t:Y→D

min
P∈J (P1,...,Pm)

∑
y

P(y) · t(y)

where P(y) = P (y|·) ∈ R|Θ| denotes the vector corresponding to the probability of y

in each state.

If only a single experiment P : Θ → ∆(Y ) is considered (m = 1),

W (P ;D) = max
t:Y→D

∑
y

P(y) · t(y).

Note that the value for a payoff set is tightly connected to the value of the decision

problem that induces it. Specifically, we have V (P1, ..., Pm; (A, u)) = W (P1, ..., Pm;H(A, u)).

Similar to V , W also has the property that having access to more experiments

can be no worse than having access to just one experiment.

Lemma 16. For any decision problem D,

W (P1, ..., Pm;D) ≥ W (P1;D)

Proof. Suppose t1 : Y1 → D is the solution to W (P1;D). Define t̃ : Y1×· · ·×Ym → D

as t̃(y1, ..., ym) = t1(y1), and we have

W (P1, ..., Pm;D) ≥ min
P∈P(P1,...,Pm)

∑
y

P(y) · t̃(y) =
∑
y1

P1(y1) · t1(y) = W (P1;D).

Another useful property of W is its separability with respect to payoff sets, anal-

ogous to the separability of V with respect to separable decision problems.

52



Lemma 17. Let C,D ⊆ R2 be two payoff sets, and C + D denote their Minkowski

sum. Then

W (P ;C +D) = W (P ;C) +W (P ;D).

Proof. Let t∗C and t∗D be solutions to W (P ;C) and W (P ;C), respectively. Define

t : Y → C +D to be t(y) = t∗C(y) + t∗D(y). Then

W (P ;C +D) ≥
∑
y

P(y) · t(y)

=
∑
y

P(y) · (t∗C(y) + t∗D(y))

=
∑
y

P(y) · t∗C(y) +
∑
y

P(y) · t∗D(y)

= W (P ;C) +W (P ;D).

Conversely, let t∗ be a solution to W (P ;C +D). Then for any y, there exists cy ∈ C

and dy ∈ D such that t∗(y) = cy + dy. Define tC(y) = cy and tD(y) = dy, then

W (P ;C) +W (P ;D) ≥
∑
y

P(y) · tC(y) +
∑
y

P(y) · tD(y)

=
∑
y

P(y) · t∗(y)

= W (P ;C +D).

B.5.2 Binary-Action Decision Problems

Now we return to the binary action decision problem (Abi, ubi). The payoff polyhedron

corresponding to (Abi, ubi) can be represented as intersection of three halfspaces:

H(Abi, ubi) =
⋂

β∈B
(Abi,ubi)

{v ∈ R2 : β · v ≤ kβ}

where B(Abi,ubi) = {e1, e2, β∗} with e1 = (1, 0), e2 = (0, 1), and β∗ ∈ R2
++ denote the

set of normal vectors, and ke1 = maxa∈A u(θ = 1, a), ke2 = maxa∈A u(θ = 2, a), and

kβ∗ ∈ R. This is visualized in Fig. 7.

53



The set of normal vectors, B(Abi,ubi), depends on the binary action decision prob-

lem, where β∗ is proportional to the belief at which the decision maker is indifferent

between the two actions. Since the decision problem (Abi, ubi) is fixed, for notational

simplicity, we will henceforth omit the dependence of B on (Abi, ubi).

θ = 2

θ = 1

u(·, a2)

u(·, a1)

e2

e1

β∗

H(A, u)

Figure 7: Payoff polyhedron for a binary-state binary-action problem

We next define payoff sets that have the same shape as the H(Abi, ubi).

Definition 9. A payoff set D ⊂ R2 is a B-shape polyhedron if

D =
⋂
β∈B

{v ∈ R2 : β · v ≤ kβ}

for some constants {kβ}β∈B ∈ R.

Note that the constraint β∗ · v ≤ kβ∗ may be redundant in a B-shape polyhedron,
in which case the polyhedron is an unbounded rectangle. Such a polyhedron can be

represented as {v : v ≤ v∗} for some v∗ ∈ R2 and corresponds to a single-action

decision problem. We call such a B-shape polyhedron trivial.

Clearly, if D is a trivial B-shape polyhedron, W (P ;D) = W (P ′;D) for any P, P ′.

The next lemma shows that for any non-trivial B-shape polyhedron, the relative value
of experiments under (Abi, ubi) is preserved.

Lemma 18. If D is a non-trivial B−shape polyhedron, then W (P1;D) > maxj ̸=1W (Pj;D).

Proof. Any non-trivial B-shape polyhedron D has two extreme points, denoted by

ex(D)1 and ex(D)2. See Fig. 8 for an illustration.
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θ = 2

θ = 1

ex(D)2

ex(D)1

e2

e1

β∗

D

Figure 8: Extreme points of a non-trivial B-polyhedron

The two extreme points are defined by two linear equations:(
e1

β∗

)
v =

(
ke1

kβ∗

) (
e2

β∗

)
v =

(
ke2

kβ∗

)
,

with the closed-form solutions ex(D)1 =

(
ke1

kβ∗−β∗
1ke1

β∗
2

)
and ex(D)2 =

(
kβ∗−β∗

2ke2
β∗
1

ke2

)
. A

useful observation is that (ex(D)2−ex(D)1) = (kβ∗ −ke1β
∗
1 −ke2β

∗
2)

(
− 1

β∗
1

1
β∗
2

)
. That is,

β∗ determines the direction of the vector (ex(D)2 − ex(D)1), and the constant terms

kβ only affect the scalar multiplier. Moreover, the multiplier (kβ∗−ke1β
∗
1−ke2β

∗
2) > 0,

because (ke1 , ke2) ∈ int(D) and kβ∗ = maxv∈D β∗ · v.
For any B-shape polyhedron D, and any Pj,

W (Pj;D) = max
tj :Yj→D

∑
yj∈Yj

Pj(yj) · tj(yj)

Since the objective function is linear and the extreme points of D are ex(D)1 and
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ex(D)2, a solution to the problem is

t∗j(yj) =


ex(D)1 if Pj(yj) ·

− 1
β∗
1

1
β∗
2

 ≤ 0

ex(D)2 if Pj(yj) ·

− 1
β∗
1

1
β∗
2

 > 0.

For each Pj, let Ỹj = {y ∈ Yj : Pj(yj) ·

(
− 1

β∗
1

1
β∗
2

)
≤ 0}, and we can rewrite:

W (Pj;D) =
∑
yj∈Ỹj

Pj(yj) · ex(D)1 +
∑

yj∈Ỹj/Ỹj

Pj(yj) · ex(D)2.

Let xPj
=
∑

yj∈Ỹj
Pj(yj), then

W (Pj;D) = xPj
· ex(D)1 + (1− xPj

) · ex(D)2

= 1 · ex(D)2 + xPj
· (ex(D)1 − ex(D)2).

Now consider any j ̸= 1, we have

W (P1;D)−W (Pj;D) = (xPj
− xP1) · (ex(D)2 − ex(D)1)

= (kβ∗ − ke1β
∗
1 − ke2β

∗
2)(xPj

− xP1) ·

(
− 1

β∗
1

1
β∗
2

)

Note that for different non-trivial B-shape polyhedra D (i.e., different parameters

ke1 , ke2 , kβ∗), the above value differs only by a positive constant factor. This implies

that if W (P1;D) −W (Pj;D) > 0 for one non-trivial B-shape polyhedron, the value

is also strictly positive for any non-trivial B-shape polyhedron.

Recall that

W (P1;H(Abi, ubi))−W (Pj;H(Abi, ubi)) = V (P1; (A
bi, ubi))− V (Pj; (A

bi, ubi)) > 0

where H(Abi, ubi) is a B-shape polyhedron. Therefore,

W (P1;D)−W (Pj;D) > 0,
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for any non-trivial B-shape polyhedron.

B.5.3 B-cover

For any payoff set D, we define the smallest B-shape polyhedron that covers D as its

B-cover. See Fig. 9 for an illustration.

Definition 10. For any payoff set D, its B-cover is defined as

covB(D)
.
=
⋂
β∈B

{v : β · v ≤ ρD(β)},

where ρD(β) = supv∈D β ·D is the support function of D.

D

(a) A payoff setD derived from some three-
action decision problem

e2

e1

β∗

covB(D)

(b) The corresponding B-cover covB(D)

Figure 9

We state a few properties of B-cover that will be useful in our analysis.

Lemma 19. 1. (Monotonicity) If D ⊆ D′, covB(D) ⊆ covB(D
′).

2. (Reflexive) If D is a B-shape polyhedron, covB(D) = D.

3. (Superadditivity) covB(D +D′) ⊇ covB(D) + covB(D
′)

4. (Preserving Triviality) If covB(D) is trivial, then there exists a maximum in D.

That is, ∃v̄ ∈ D such that v ≤ v̄ for all v ∈ D.
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Proof. 1. Since D ⊆ D′, ρD(β) ≤ ρD′(β) for all β ∈ B. Therefore,⋂
β∈B

{v : β · v ≤ ρD(β)} ⊆
⋂
β∈B

{v : β · v ≤ ρD′(β)}.

2. Clearly D ⊆ covB(D), because for every v ∈ D and every β ∈ B, β · v ≤ ρD(β).

Now consider any B-shape polyhedron, represented by

D =
⋂
β∈B

{v ∈ R2 : β · v ≤ kβ}

for some {kβ}β∈B ∈ R2. Note that for all β ∈ B and v ∈ D, β · v ≤ kβ, so we

have ρD(β) = maxv∈D β · v ≤ kβ. Therefore,

covB(D) =
⋂
β∈B

{v : β · v ≤ ρD(β)} ⊆
⋂
β∈B

{v : β · v ≤ kβ} = D,

which implies covB(D) = D.

3. For any ṽ ∈ covB(D) + covB(D
′), there exists v ∈ covB(D) and v′ ∈ covβ(D

′)

such that ṽ = v+v′. Since v ∈ covB(D) and v′ ∈ covβ(D
′), we have β ·v ≤ ρD(β)

and β ·v′ ≤ ρD′(β) for all β ∈ B. Therefore, for every β ∈ B, β · ṽ = β ·(v+v′) ≤
ρD(β) + ρD′(β) = ρD+D′(β), which implies ṽ ∈ covB(D +D′).

4. If covB(D) is trivial, the constraint β∗ · v ≤ ρD(β
∗) is redundant. That is

{v : β∗ · v ≤ ρD(β
∗)} ⊇ {v : e1 · v ≤ ρD(e1)} ∩ {v : e2 · v ≤ ρD(e2)}.

Let v̄1 = maxv∈D e1 · v and v̄2 = maxv∈D e2 · v. We claim that v̄ = (v̄1, v̄2) ∈ D.

Suppose not, then we have maxv∈D β∗ · v < β∗ · v̄. However, v̄ ∈ {v : e1 · v ≤
ρD(e1)} ∩ {v : e2 · v ≤ ρD(e2)} but v̄ /∈ {v : β∗ · v ≤ ρD(β

∗)}, contradicting to

the constraint β∗ · v ≤ ρD(β
∗) being redundant. Thus, v̄ ∈ D and for all v ∈ D,

v ≤ v̄, which concludes the proof.

B.5.4 Dominance

We say a collection of payoff sets D1, ..., Dk ⊆ R|Θ| is dominated by D if

D1 + · · ·+Dk ⊆ D.
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The following observation is immediate:

Lemma 20. If {Dℓ}kℓ=1 is dominated by D,

W (P1, ..., Pm;D) ≥
k∑

ℓ=1

W (P1, ..., Pm;Dℓ).

Proof. Let tℓ be a maxmin strategy to W (P1, ..., Pm;Dℓ). Construct

t : Y → D

y 7→
k∑

ℓ=1

tℓ(y).

Then

W (P1, ..., Pm;D) ≥ min
P∈J

∑
y

P(y) · t(y)

= min
P∈J

∑
y

P(y) ·
k∑

ℓ=1

tℓ(y)

= min
P∈J

k∑
ℓ=1

∑
y

P(y) · tℓ(y)

≥
k∑

ℓ=1

min
P∈J

∑
y

P(y) · tℓ(y)

=
k∑

ℓ=1

W (P1, ..., Pm;Dℓ).

Next, we present the key lemma underlying our uniqueness theorem.

Lemma 21. Suppose a collection of decision problems D1, ..., Dm is dominated by a

B-shape polyhedron D, and satisfies

m∑
j=1

W (Pj;Dj) ≥ W (P1, ..., Pm;D).

Then covB(Dj) must be trivial for all j ̸= 1.
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Proof. Since D1 + · · ·+Dm ⊆ D, from properties 1 and 2 in Lemma 19,

covB(D1 + · · ·+Dm) ⊆ covB(D) = D.

From property 3 in Lemma 19,

covB(D1) + · · ·+ covB(Dm) ⊆ covB(D1 + · · ·+Dm),

so covB(D1), · · · , covB(Dm) is also dominated by D.

Now suppose by contradiction that covB(Dj) is not trivial for some j ̸= 1. Then

W (P1, ..., Pm;D) ≥
m∑
j=1

W (P1, ..., Pm; covB(Dj))

≥
m∑
j=1

W (P1; covB(Dj))

>
m∑
j=1

W (Pj; covB(Dj))

≥
m∑
j=1

W (Pj;Dj)

where the first inequality follows from Lemma 20, second inequality follows from

Lemma 16, the third inequality follows from Lemma 18, and the last inequality follows

from cov(Dj) ⊇ Dj. Therefore, it contradicts to
∑m

j=1W (Pj;Dj) ≥ W (P1, ..., Pm;D),

and Dj must be trivial for all j ̸= 1.

B.5.5 Common Support of the Blackwell Supremum

Lemma 22. Suppose Pj(yj|θ) > 0 for all j, yj, θ, and P ∗ ∈ J (P1, ..., Pm) is a Black-

well supremum of P1, ..., Pm. Then, P
∗(·|θ1) and P ∗(·|θ2) have common support; that

is, for any y1, ..., ym, P
∗(y1, ..., ym|θ1) > 0 if and only if P ∗(y1, ..., ym|θ2) > 0.

Proof. If P ∗(·|θ1) and P ∗(·|θ2) have different supports, then there exists y that induces

a point-mass belief either on state θ1 or θ2. So the corresponding Zonotope ΛP ∗ will

include either a point (x, 0) or (0, x) for some x > 0. Since Pj(yj|θ) > 0 for all j, yj, θ,

none of the Zonotopes ΛPj
contains such points. From Lemma 1, ΛP ∗ = co(ΛP1 ∪

· · · ∪ΛPm), which also should not contain such points, leading to a contradiction.
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B.5.6 Proof of the Theorem

Proof of Uniqueness for Theorem 1. Let σ∗ be a robustly optimal strategy in the de-

cision problem (Abi, ubi). We have

V (P1, ..., Pm; (A
bi, ubi)) = min

P∈J (P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

This is a state-by-state optimal transport problem, and so the corresponding dual

problem is

max
ϕj :Θ×Yj→R, j=1,...,m

∑
θ

∑
j

∑
yj

ϕj(θ, yj)Pj(yj|θ)

s.t.
m∑
j=1

ϕj(θ, yj) ≤ ubi(θ, σ∗(y)) ∀θ,y.

Or in vector form:

max
ϕj :Yj→R|Θ|, j=1,...,m

∑
j

∑
yj

ϕj(yj) ·Pj(yj)

s.t.
m∑
j=1

ϕj(yj) ≤ ubi(·, σ∗(y)) ∀y.

Let {ϕ∗
j}mj=1 be a solution to the dual problem. Define Dj = co({ϕ∗

j(yj)|yj ∈
Yj}) − R2

+ for j = 1, ...,m. Note that D1 + · · · + Dm ⊆ H(Abi, ubi), so {Dj}mj=1 is

dominated by H(Abi, ubi), and satisfies

m∑
j=1

W (Pj;Dj) ≥
m∑
j=1

∑
yj

ϕ∗
j(·, yj) ·Pj(yj)

= V (P1, ..., Pm; (A
bi, ubi))

= W (P1, ..., Pm;H(Abi, ubi)).

From Lemma 21, cov(D2), ..., cov(Dm) must be trivial, and property 4 of Lemma 19

implies that for each j ̸= 1, there exists y∗j such that ϕ∗
j(y

∗
j ) ≥ ϕ∗

j(yj) for all yj. Now

we define ϕ̃j(yj) = ϕ∗
j(y

∗
j ) for all yj as a constant function. Since ϕ̃j(yj) ≥ ϕ∗

j(yj) and

ϕ∗
1, ϕ̃2, ..., ϕ̃m is feasible in the dual problem, ϕ∗

1, ϕ̃2, ..., ϕ̃m is also a solution to the

dual problem.

From Lemma 2 and Corollary 1, a Blackwell supremum P ∗ ∈ J (P1, ..., Pm) solves
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Nature’s MinMax Problem. From the minmax theorem, P ∗ is a solution to

min
P∈J (P1,...,Pm)

∑
θ

P (y|θ)ubi(θ, σ∗(y)).

Lemma 22 implies that P ∗(·|θ1) and P ∗(·|θ2) have a common support, which we denote

by Ȳ = {y ∈ Y,P(y) > 0}.
Now for any (y1, ȳ−1) ∈ Ȳ , complementary slackness implies

ϕ∗
1(·, y1) +

m∑
j=2

ϕ̃j(·, ȳj) = ubi(·, σ∗(y1, ȳ−1)).

For any (y1, y−1) ∈ Y , the dual constraint says

ϕ∗
1(·, y1) +

m∑
j=2

ϕ̃j(·, yj) ≤ ubi(·, σ∗(y1, y−1)).

Since ϕ̃j is constant for j ≥ 2, the left-hand-side of the two equations above are the

same, which implies u(·, σ∗(y1, ȳ−1)) ≤ u(·, σ∗(y1, y−1)). Since (A
bi, ubi) is a non-trivial

binary-action decision problem, any two (mixed) actions are either identical or induce

payoff vectors that are not ordered. Therefore, ubi(·, σ∗(y1, ȳ−1)) ≤ ubi(·, σ∗(y1, y−1))

implies σ∗(y1, ȳ−1) = σ∗(y1, y−1). So we have derived that for any y1 ∈ Y1 and

y−1, y
′
−1 ∈ Y−1, σ

∗(y1, y−1) = σ∗(y1, y
′
−1), which concludes the proof.
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