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Abstract

The seller of an asset has the option to buy hard information about the value of the

asset from an intermediary. The seller can then disclose the acquired information before

selling the asset in a competitive market. We study how the intermediary designs and

sells hard information to robustly maximize her revenue across all equilibria. Even though

the intermediary could use an accurate test that reveals the asset’s value, we show that

robust revenue maximization leads to a noisy test with a continuum of possible scores.

In addition, the intermediary always charges the seller for disclosing the test score to the

market, but not necessarily for running the test. This enables the intermediary to robustly

appropriate a significant share of the surplus resulting from the asset sale.
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1 Introduction

This paper studies settings in which individuals purchase hard information from an intermediary

that they can verifiably disclose to influence the actions of others. Such settings are ubiquitous:

Entrepreneurs often seek evidence that they can disclose to venture capitalists to obtain more

funding, sellers of physical and financial assets routinely pay for evaluations that enable them

to obtain better prices, and workers commonly seek certification before applying for positions.

As a concrete example, consider the market for credit ratings. Credit rating agencies rate

a variety of financial instruments, from bonds to mortgage-backed securities, as well as the

corporations, cities, or countries that issue them. The choice to obtain a credit rating is made

by the issuer, and the rating affects the profitability of issuing the financial instrument. Some

financial instruments can be issued with or without credit ratings.1

Who pays for credit ratings and at what stage of the rating process? Since the 1970s, the

credit rating industry has adopted an “issuer-pays” model, in which the issuer pays for the

credit rating. The credit rating agency often provides the issuer with an informal “preliminary

credit rating” (or a “shadow rating”), and based on this preliminary rating, the issuer chooses

whether to complete the credit rating process. The issuer typically pays for the credit rating

when the credit rating process is completed, but may pay a lower fee if he chooses not to

complete the process after the preliminary rating.2

As a result, an issuer can shop for a rating, disclose it if it is favorable, and conceal it if it is

unfavorable. According to a 2009 Securities and Exchange Commission (SEC) report (SEC File

S7-24-09), “registrants, among others, can solicit preliminary credit ratings from a rating agency

[...] investors are not aware of when registrants seek a preliminary rating or when registrants

obtain additional credit ratings but choose not to use them.” The credit rating agency, in turn,

may design rating schemes that are attractive to issuers but do not necessarily provide accurate

information to investors. “Ratings shopping” and the incentives of credit rating agencies are

discussed in a theoretical and empirical literature on credit ratings and disclosure, and in SEC

reports (including the aforementioned one) and proposals to amend disclosure rules.3

1For example, around 30% of the municipal bonds issued between March 1977 and December
1980 were not rated by either Moody’s or Standard and Poor’s (Reeve and Herring, 1986). In
2019, non-rated municipal bonds accounted for more than half of the Bloomberg Barclays benchmark
high-yield municipal index; see https://www.lordabbett.com/en/perspectives/fixedincomeinsights/

municipal-bonds-muni-matters-demystifying-nonrated-bonds.html.
2Describing the fee structure for credit ratings, a 2008 SEC report states that “Typically, the rating agency

is paid only if the credit rating is issued, though sometimes it receives a breakup fee for the analytic work
undertaken even if the credit rating is not issued. . . ” (Summary Report of Issues Identified in the Commission
Staff’s Examinations of Select Credit Rating Agencies, page 9).

3Sangiorgi and Spatt (2017a) survey the theoretical literature, which we discuss in detail below. He, Qian,
and Strahan (2012, 2016) and Griffin, Nickerson, and Tang (2013) present evidence that the market takes into
account both the issuers’ ability to censor unfavorable credit ratings and the incentive of credit rating agencies
to cater to issuers.
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Our goal is to shed some light on the strategic behavior of information intermediaries—

such as credit rating agencies—and those who pay for their services. We consider a stylized

game in which the owner of an asset first chooses whether to purchase hard information from

a profit-maximizing intermediary, and then chooses whether to disclose the information before

selling the asset. We focus on the intermediary’s design problem: Should the intermediary

offer accurate or noisy information? What fee structure should she use? And how much of the

surplus resulting from the sale of the asset can she extract?

To answer these questions, we abstract from several features of real-world interactions. One

such feature is the productive role that an intermediary may play. For example, the information

provided by an intermediary may help match less risky products with more risk-averse investors,

or serve to alleviate moral hazard or adverse selection. Our analysis highlights how information

can be used to generate revenue for the intermediary even without serving a productive role.

We also abstract from ex ante asymmetric information. This shuts down signaling and focuses

our analysis on voluntary disclosure. It is also consistent with some credit rating settings in

which a central challenge is not asymmetric information but the difficulty of evaluating the

risk associated with the products. An example is a local government that issues a bond and

has no particular expertise in evaluating it. Another example is structured products such as

mortgage-backed securities, which are complex and present an evaluation challenge even for

credit rating agencies. Accordingly, much of the literature on “ratings shopping” (discussed in

the related literature below) assumes that all players have symmetric information at the outset.

In our model, an agent owns an asset that he would like to sell in a competitive market.

Both the agent and the market have symmetric information about the asset’s market value.

Before selling the asset, the agent can purchase additional information from an intermediary

about the asset’s value that the agent can disclose to the market to improve the terms of trade.

The intermediary specifies a test, which stochastically maps the asset’s value to a score that can

be verifiably disclosed (where a score is the posterior expected value of the asset), a testing fee,

and a disclosure fee. If the agent chooses to pay the testing fee, the test is run and he observes

the resulting score. He then chooses whether to pay the disclosure fee in order to disclose the

score to the market as hard information. The market cannot distinguish between the agent

not disclosing the score and the test not having been run. Because the market is competitive,

the market price for the asset following disclosure or non-disclosure equals the asset’s expected

value conditional on all the information available to the market and the equilibrium choices of

the agent.

We show that by choosing a test that generates noisy information and charging a disclosure

fee, the intermediary is able to guarantee herself a significant share of the surplus arising from

trade even when the equilibrium played by the other parties is chosen adversarially to her

interests. This is true even though the information in our model is neither socially valuable
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nor ex ante valuable to the agent. The driving force, as we argue below, is the agent’s inability

to commit not to use the intermediary’s services. This implies that the presence of profitable

intermediaries in an industry, is not, in itself, evidence that the provision of hard information

improves the welfare of other market participants. Moreover, even if an intermediary’s services

generate value, the same profit motive may incentivize her to provide inaccurate information

and charge a disclosure fee.

To see how the intermediary can guarantee herself a high revenue in our model, we first

observe that the agent’s outside option depends on the market’s expectation of the agent’s

behavior. If the market expects the agent to pay the testing fee with some probability but the

agent attempts to opt out of the disclosure game by not paying the testing fee, he cannot prove

to the market that he chose to opt out. Instead, when the market sees no score being disclosed,

it rationally concludes that the test may have been run but the agent chose not to disclose a

low score. The market weights this “bad news” contingency and the “no news” contingency

in which the agent decided not to pay the testing fee, where the weights depend on what the

market believes the agent does in equilibrium. Thus, unlike in a standard mechanism-design

problem, the agent’s outside option depends on both the test-fee structure and the equilibrium

played in the induced game between the agent and the market.

If the intermediary can select the equilibrium of the induced game, then an optimal test-

fee structure comprises a fully revealing test, a high testing fee, and no disclosure fee. The

intermediary selects an equilibrium in which the agent always pays the testing fee, and when

the agent chooses not to disclose the score, the market believes that the test revealed that the

asset has its lowest possible value (say θ). The agent discloses the test score whenever it reveals

that the asset’s value is not the lowest possible value. The high testing fee charged by the

intermediary extracts all of the agent’s expected surplus (minus θ) from selling the asset, so his

expected payoff is θ. This is consistent with a key intuition from standard mechanism design:

since the agent’s payoff beyond what is needed to satisfy his individual rationality constraint is

due to information rents, when the agent starts with no private information the designer can

keep the agent’s payoff at his individual rationality level, extract the full surplus, and achieve

this by charging an upfront fee.4

But the game induced by this test-fee structure has another equilibrium, in which the agent

never pays the testing fee so the intermediary’s revenue is zero. In this equilibrium, the market

treats non-disclosure as “no news,” and the resulting market price is the asset’s ex ante expected

value. Given this, it is optimal for the agent not to pay for the intermediary’s services. Thus,

choosing this test-fee structure leaves the intermediary vulnerable to obtaining zero revenue. We

show in Proposition 1 that this is not an accident: any test-fee structure that has an equilibrium

4The intermediary can also extract all the surplus by using a binary score test, making testing free, and
charging a high disclosure fee.
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in which the intermediary extracts (approximately) all the surplus also has an equilibrium in

which the intermediary’s revenue is (approximately) zero.

Motivated by the above discussion, we identify robustly optimal test-fee structures, namely

those that guarantee the highest revenue to the intermediary across all equilibria of the induced

game. This corresponds to the intermediary choosing the test-fee structure that maximizes her

revenue assuming that the equilibrium of the induced game is selected adversarially to her

interests. Our motivation for studying robustly optimal test-fee structures is twofold. First,

the intermediary may be unable to coordinate the behavior of the agent and the market on

her most preferred equilibrium. The uncertainty about which equilibrium will be played could

motivate her to be cautious and therefore use test-fee structures that guarantee her a high

revenue across all equilibria.5 Second, for any test-fee structure, the sum of the agent and the

intermediary’s revenue is constant across equilibria and equal to the asset’s ex ante expected

value, so the intermediary’s least preferred equilibrium is the agent’s most preferred equilibrium.

And the agent and the market may be able to coordinate on the agent’s preferred equilibrium.

Finding the robustly optimal test-fee structure involves optimizing across all test-fee struc-

tures while looking at the worst equilibrium in each induced game. Different tests induce

different distributions of private information about the asset’s value for the agent in the in-

duced games, and different fees change the agent’s incentives to obtain and disclose this private

information. Thus, the optimization entails comparing the equilibria of disclosure games that

vary in both the agent’s private information and his disclosure costs. Despite this richness,

we find that robustly optimal test-fee structures take a relatively simple form regardless of the

distribution of the asset’s value. A robustly optimal test generates a marginal distribution of

scores that feature an exponential component over an interval of scores (even if the asset’s

value is drawn from a finite set), one atom below this interval, and possibly one atom above it.

Such a “step-exponential-step” distribution is illustrated in Figure 1. The optimal disclosure

fee is always positive, but the optimal testing fee may be positive or 0. The resulting revenue

guarantee to the intermediary is positive but bounded away from the full surplus.

To derive these features of the robustly optimal test-fee structure we first observe that, in

our model, the intermediary does not provide any added value to the agent ex ante. This is

because the market draws correct (Bayesian) inferences and is competitive, so for every test-

fee structure and any equilibrium, the ex ante expected market price is the ex ante expected

value of the asset. Thus, for every test and for all positive fees, the agent strictly prefers an

equilibrium in which the market expects him not to have the asset tested and consequently

offers him the asset’s ex ante expected value. The agent then retains the full surplus and the

5Our focus on adversarial equilibrium selection is shared by a rapidly growing literature in mechanism and
information design, including Bergemann, Brooks, and Morris (2017), Du (2018), Hoshino (2019), Ziegler (2020),
Inostroza and Pavan (2020), Dworczak and Pavan (2020), Halac, Kremer, and Winter (2020), Halac, Lipnowski,
and Rappoport (2020), and Mathevet, Perego, and Taneva (2020).
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Figure 1: A robustly optimal score distribution if the asset quality θ is drawn from [0, 1], where G is the marginal
CDF on scores. The score distribution features atoms on a low and a high score, and an exponential distribution
over a continuum of intermediate scores.

intermediary’s revenue is zero. If the market were to observe whether the asset is tested, the

agent could achieve this as an equilibrium outcome by not paying the testing fee. But the

market does not observe whether the asset is tested. Therefore, the market’s expectation of

whether the asset had been tested and the agent observed the resulting score must be consistent

with the agent’s unobserved equilibrium choice of whether to pay the testing fee.

This is how the intermediary obtains a positive payoff robustly: she uses option value as a

carrot to make it non-credible for the agent not to pay for the asset to be tested. Because the

market only learns that the test has been run if the agent pays the disclosure fee and discloses the

test score, the intermediary creates option value for the agent by offering a test that generates

high test scores with some probability and setting sufficiently low testing and disclosure fees. If

this option value is sufficiently high, the agent cannot credibly refrain from paying the testing

fee. The intermediary then obtains at least the testing fee in every equilibrium. Moreover,

the market then treats non-disclosure as concealing a low score, which further motivates the

agent to pay the disclosure fee and disclose the test score. The agent is trapped by market

expectations that he has paid the testing fee and will disclose if the test score is sufficiently

high. This makes the test an irresistible product for the agent.

But even if the agent pays the testing fee with certainty, multiple equilibria may exist. These

equilibria differ in the set of scores that the agent discloses, and therefore in the probability of

disclosure and the intermediary’s revenue. The exponential score distribution is robustly opti-

mal because it eliminates potential equilibria in which the agent discloses with low probability.

We develop an intuition for this result by showing that the intermediary can be thought of as

choosing an optimal “demand curve for testing,” subject to the demand curve being feasible and

the quantity of testing demanded corresponding to the one in the equilibrium least favorable

to the intermediary. We illustrate this approach in Section 2, and provide a general analysis in

Sections 3–5.

Section 6 describes three extensions. First, we show that if the intermediary can charge only
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a testing fee, a robustly optimal test is binary. We also show that if the intermediary can use

only binary tests, it suffices to charge only a testing fee. Second, we consider a setting in which

testing is costly for the intermediary. We show that if testing costs increase in the Blackwell

order, then our main results continue to hold, i.e., there exists a robustly optimal test in the

step-exponential-step class. Moreover, if the cost increase is strict, then every robustly optimal

test is in this class. Third, we consider an intermediary who can sell the agent multiple pieces of

evidence, and gives him the choice of which to disclose. We show that this additional flexibility

does not increase the intermediary’s revenue guarantee.

Our work builds on the study of verifiable disclosure and persuasion games, initiated by

Grossman (1981) and Milgrom (1981). Their main insight is that if a privately informed agent

can costlessly and verifiably disclose evidence about his type, the unique equilibrium involves full

disclosure. The subsequent literature suggests a number of mechanisms that dampen this force,

including exogenously costly disclosure (Jovanovic, 1982; Verrecchia, 1983) and lacking evidence

with positive probability (Dye, 1985). Matthews and Postlewaite (1985) and Shavell (1994)

consider an uninformed agent who decides whether to take a fully revealing test. Matthews

and Postlewaite (1985) show that the unique equilibrium involves testing and full disclosure of

the test result when disclosure is voluntary, but involves no testing when disclosure of the test

result is mandatory. Shavell (1994) assumes the agent bears a privately-known cost of testing,

and studies how this cost dampens unraveling.

In our model also, the agent faces a cost of obtaining information about her type and a cost

of disclosing that information in a verifiable form, and with positive probability, the agent may

lack evidence. But we derive these features endogenously because the intermediary chooses the

evidence structure as well as the cost of learning and disclosing the evidence; the probability that

the market attributes to the agent having evidence is determined in equilibrium. Treating these

features as endogenous objects reveals a tradeoff: all else equal, the intermediary would like the

market to unravel (so that the agent discloses with maximal probability), but the instruments

from which she earns revenue are exactly those that counter unraveling. This “quantity-price”

tradeoff leads to the price-theoretic approach to evidence generation we develop, in which the

intermediary both chooses the optimal price and designs the optimal demand curve for evidence

subject to constraints that correspond to Bayes rule and adversarial equilibrium selection.

A closely related strand of the disclosure literature studies choices made by agents to influ-

ence market perceptions. Ben-Porath, Dekel, and Lipman (2018) model how an agent chooses

projects when he obtains evidence of project returns with positive probability. Their analysis

emphasizes option value from the possibility of disclosure as motivating the agent to choose

riskier projects. DeMarzo, Kremer, and Skrzypacz (2019) study how an agent chooses tests and

disclosures to influence the market valuation of his asset when the choice of test is privately

observed. They show that the test and disclosure policy are chosen to minimize the asset’s
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value conditional on non-disclosure. Shishkin (2019) considers an agent who commits upfront

to a test, receives a test score with some exogenous probability, and then chooses whether to

disclose the score to a receiver. He shows that a pass / fail test is optimal when the probability

of obtaining evidence is low.6 In these papers the agent generates evidence in house, whereas

in our work, evidence is generated by a profit-maximizing intermediary.7

Our work complements that of Lizzeri (1999), who is one of the first to study how a revenue-

maximizing intermediary would design and price information. His setting differs from ours in

two respects. First, he studies signaling dynamics when the agent is perfectly and privately

informed at the outset about the value of the asset. Second, he assumes mandatory disclo-

sure, i.e., if the agent has the asset tested, he must disclose the score. Mandatory disclosure

effectively renders the agent’s testing decision observable to the market. With both of these

features, Lizzeri (1999) shows that the intermediary can extract the full surplus using a nearly

uninformative test and a high testing fee.8 Our work focuses on voluntary disclosure, i.e., when

the agent can choose whether to disclose or conceal the test score. We shut down the signaling

channel by studying an agent who is ex ante uninformed. We find that once disclosure is vol-

untary, the intermediary can use option value to induce an ex ante uninformed agent to have

the asset tested with certainty in every equilibrium. By contrast, were disclosure mandatory

(as in Lizzeri 1999), an uninformed agent could obtain the full surplus by not having the asset

tested.

A number of papers have studied related issues in the context of credit rating agencies, with

a particular focus on ratings shopping when the issuer pays to disclose credit scores. As the

literature has noted, a credit rating agency is then inclined to design rating schemes that induce

disclosure. Skreta and Veldkamp (2009) consider the implications of this on investors who are

not sufficiently sophisticated to account for selective disclosure. Mathis, McAndrews, and Ro-

chet (2009), Bolton, Freixas, and Shapiro (2012), and Frenkel (2015) offer dynamic reputational

models for how credit rating agencies may commit to information structures. Farhi, Lerner,

and Tirole (2013) study how an uninformed agent shops for credit when facing a hierarchy of

competing intermediaries who have different standards. Sangiorgi and Spatt (2017b) consider

equilibrium implications for credit shopping when disclosure is voluntary versus mandatory.

6Pass / fail tests are generally not robustly optimal in our framework, but we show in Section 6.1 that if the
intermediary can charge only a testing fee, then a binary test is robustly optimal.

7DeMarzo, Kremer, and Skrzypacz (2019) also consider an extension in which the agent can purchase evidence
from a monopolistic intermediary when the equilibria are selected to favor the intermediary.

8See Kartik, Lee, and Suen (2020) for a variant of Lizzeri’s model in which the agent is privately and
imperfectly informed about the asset’s value. Harbaugh and Rasmusen (2018) study a related model, in which
the intermediary’s objective is to provide as much information as possible to the receiver.
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2 An Example

Consider an agent who will sell an asset in a competitive asset market. The market value of the

asset, θ, is either 0 or 1, each with equal probability. Neither the agent nor the asset market

know the asset’s value but an intermediary can run a test that generates information about

the asset’s value. The intermediary chooses the test, T , which stochastically maps the asset’s

value to an unbiased score s in [0, 1], so s = E[θ|s]. If the agent wants the asset tested, he

has to pay the intermediary a testing fee φt. If the asset is tested, the score is reported to

the agent. The agent then chooses whether to pay an additional disclosure fee φd to disclose

the score as hard information to the market; otherwise, no score is disclosed to the market. If

no score is disclosed, the market cannot distinguish between (i) the asset not being tested and

(ii) the asset being tested but the agent not disclosing the score. The intermediary chooses

both the test T and the fees (a test-fee structure), and her choice induces a disclosure game

between the agent and the asset market. The price the agent obtains for the asset is equal

to the expected value of the asset conditional on all the information available to the market

and conditional on the equilibrium played. The intermediary’s revenue is equal to the fees she

collects. Some test-fee structures have multiple equilibria, and the intermediary’s objective is

to choose a test-fee structure that guarantees her the highest revenue across equilibria.

We use this example to illustrate several features of our analysis. We show that the inter-

mediary benefits from using noisy tests that pool low and high asset values as intermediate

scores. We depict how our problem maps to setting a price on an optimally chosen demand

curve. And we show why the robustly optimal test uses an exponential score distribution. To

illustrate each of these features, it suffices to assume that the intermediary can charge only

a disclosure fee φd (so testing is free). As we later show, these features also arise when it is

optimal to charge a testing fee.

We first describe the intermediary’s revenue guarantee if she uses a fully revealing test, i.e.,

a test in which the score is equal to the asset’s value θ. Figure 2(a) depicts our analysis of

the fully revealing test using a (inverse) demand correspondence. The demand correspondence

(the black curve) traces for any disclosure fee in [0, 1] (on the vertical axis) the corresponding

probabilities of disclosure consistent with the equilibria of the induced game (on the horizontal

axis). We now describe this set of equilibria for any disclosure fee in [0, 1].

For any disclosure fee in [0, 1], there is an equilibrium in which the agent has the asset tested,

conceals a score of 0, and discloses a score of 1. Because the asset’s score is 1 with probability

1/2, the disclosure probability is 1/2. Segment C in Figure 2(a) depicts a disclosure probability

of 1/2 for every disclosure fee in [0, 1]. To see why concealing a score of 0 and disclosing a

score of 1 is an equilibrium, observe that if the market believes that the agent is using this

strategy, then the market concludes that the agent obtained a score of 0 if no score is disclosed.
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(b) A test with scores 0, 3/4, and 1

Figure 2: The black curves are the demand correspondences, and the red curves are the robust demand curves.

Therefore, if no score is disclosed, the market offers a price of 0 for the asset. Given this market

price, the agent has no incentive to deviate: the payoff of 1 − φd from disclosing a score of

1 weakly exceeds the payoff from not disclosing, which is weakly higher than the payoff from

disclosing a score of 0. In this equilibrium, the resulting revenue for the intermediary is half

the disclosure fee. Thus, by charging a disclosure fee of 1, in this equilibrium the intermediary

extracts the entire expected market value of the asset. This equilibrium with a disclosure fee

of 1 corresponds to the highest point of segment C.

As we see in Figure 2(a), the equilibrium described above is unique when the disclosure fee

is in (0, 1/2).9 But for disclosure fees that weakly exceed 1/2, other equilibria exist. There

is an equilibrium in which the agent has the asset tested but never discloses the score, so the

disclosure probability is 0. Segment A in Figure 2(a) depicts these equilibria. Because the

market does not expect any score to be disclosed, it does not draw any inferences about the

asset’s value from non-disclosure. Therefore, if no score is disclosed, the market offers a price

of 1/2, which is the ex ante expected market value of the asset. Given this market price, the

agent prefers not to disclose a score of 1 (or 0) because the disclosure fee is at least 1/2. As the

agent does not disclose any score, the intermediary’s revenue is 0 in this equilibrium. Thus, a

disclosure fee of 1, which leads to a revenue equal to the entire expected market value of the

asset in the equilibrium described in the previous paragraph, leads to a revenue of 0 in this

equilibrium.

The demand correspondence also shows a mixed strategy equilibrium in which the agent

conceals a score of 0 and discloses a score of 1 with an interior probability. Segment B in

9If the disclosure fee is 0, then for any probability p, there is an equilibrium in which the agent discloses a
score of 1 and with probability p discloses a score of 0. Segment D in Figure 2(a) depicts these equilibria.
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s = 0 s = 3/4 s = 1
θ = 0 1− p p 0
θ = 1 0 3p 1− 3p

Table 1: Distribution of score s conditional on asset value θ, where p is in (0, 1/3).

Figure 2(a) depicts these equilibria. As segment B makes clear, a higher disclosure fee is

associated with a higher probability of disclosure. The reason is that increasing the disclosure

probability reduces the market price following non-disclosure, which makes the agent willing to

pay a higher disclosure fee.

Since we study the intermediary’s robust revenue across equilibria, we identify the “robust

demand curve” for disclosure, which maps each disclosure fee (price) to the lowest probability

of disclosure (quantity) across all the equilibria associated with that fee. This is the red curve

in Figure 2(a). The robust revenue for a given disclosure fee is the product of the disclosure

fee and the lowest equilibrium probability of disclosure, i.e., the area of the rectangle under

the robust demand curve at the point associated with that disclosure fee. The maximal robust

revenue of ≈ 1/4 for the fully revealing test is the area of the shaded rectangle in Figure 2(a),

obtained from a disclosure fee that is slightly below 1/2.10

Let us now see how the intermediary can improve her robust guarantee by introducing an

intermediate score that pools the asset’s two possible values, 0 and 1. Consider a test with

three possible scores—0, 3/4, and 1—generated by the conditional distribution in Table 1. The

demand correspondence and the robust demand curve for this test are shown in Figure 2(b).

For strictly positive disclosure fees less than 1/2, and if p is sufficiently small, there is a unique

equilibrium: the agent has the asset tested, and discloses his score if it is 3/4 or 1; if no score

is disclosed, the market offers a price of 0. The probability of disclosure in this equilibrium is

(1 + p)/2. Segment E in Figure 2(b) depicts these equilibria.11 For disclosure fees higher than

1/2, other equilibria exist, and all of them feature a lower probability of disclosure.12

Thus, by setting a disclosure fee slightly below 1/2, the intermediary obtains a revenue

of (1 + p)/4, which is higher than her revenue guarantee of 1/4 from the robustly optimal

fully revealing test. By introducing the intermediate score 3/4, the intermediary increases the

quantity of disclosure demanded in the worst equilibrium because the agent pays the disclosure

fee not only when the asset’s value is 1 but also, with some probability, when its value is 0.

10As is common with adversarial equilibrium selection, the intermediary cannot robustly achieve a payoff of
exactly 1/4 with a disclosure fee of 1/2, since there is then an equilibrium in which she obtains a payoff of 0.

11If the disclosure fee is 0, then for any probability p, there is an equilibrium in which the agent discloses
scores 3/4 and 1, and with probability p discloses a score of 0. Segment F in Figure 2(b) depicts these equilibria.

12Segment A in Figure 2(b) corresponds to equilibria in which the agent has the asset tested but never discloses
the score; segment B corresponds to equilibria in which the agent conceals scores 0 and 3/4, and discloses a
score of 1 with an interior probability; segment C corresponds to equilibria in which the agent conceals scores
0 and 3/4 and always discloses a score of 1; segment D corresponds to equilibria in which the agent conceals a
score of 0, discloses a score of 1, and discloses a score of 3/4 with an interior probability.
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The intermediary is limited, however, in how much pooling she can introduce: a value of p

that is too high introduces a bad equilibrium in which the agent has the asset tested but only

discloses a score of 1.13 If no score is disclosed, the market concludes that the score is either

0 or 3/4 and offers a price of 3p/(1 + 3p). In this equilibrium, the probability of disclosure

is (1 − 3p)/2, leading to a revenue of (1 − 3p)/4 < 1/4. To rule out this equilibrium, the

intermediary sets the value of p so that if the score is 3/4, the agent prefers to disclose his score

rather than obtain the non-disclosure price:

3

4
− φd︸ ︷︷ ︸

Disclose a score of 3/4

>
3p

1 + 3p︸ ︷︷ ︸
Nondisclosure price

With a disclosure fee slightly below 1/2, the above inequality holds for p less than 1/9. The

robust revenue is attained by setting p = 1/9 and charging a disclosure fee slightly below 1/2.

This restriction on p is a “cross-equilibrium” constraint, which ensures that a low-revenue equi-

librium is not created. Cross-equilibrium constraints lead to the exponential score distribution

in the robustly optimal tests.

To see why, let us return to the demand curve approach. Adding the score 3/4 to the

fully revealing test “flattens” the demand curve, which pushes the robust demand curve to the

right, as illustrated in the transition from Figure 3(a) to Figure 3(b). Additional scores further

flatten the demand curve and push the robust demand curve to the right. The degree to which

this can be done is limited by the cross-equilibrium constraints, and this leads to tests that

induce a rectangular demand correspondence like the one in Figure 3(c): intuitively, whenever

the demand correspondence or the robust demand curve are not a rectangle, there is some

slack that the intermediary can use to change the test in a way that increases the probability

of disclosure (by having more pooling) in the equilibrium that has the lowest probability of

disclosure, i.e., without violating cross-equilibrium constraints.

Which tests lead to rectangular demand correspondences? Those whose marginal score

distribution includes an exponentially distributed component. To see why, notice that with a

rectangular demand correspondence, there is a disclosure fee φd for which there is an interval

of equilibrium disclosure probabilities. In Figure 3(c), this disclosure fee is φd = 1/2. This

continuum of equilibria implies that there is a continuum of scores s for which

s− φd = E[s′|s′ ≤ s]. (1)

The LHS above is the payoff from disclosing a score s, and the RHS is that from not disclosing

13This corresponds to the lowest point of segment C in Figure 2(b) moving below the dotted red line, which
changes the robust demand curve and hurts the intermediary.
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Figure 3: Adding score 3/4 to the fully revealing test, thus transitioning from (a) to (b), flattens the demand
correspondence (in black) and pushes the robust demand curve (in red) to the right. Additional scores can
be added to further flatten the demand correspondence and push the robust demand curve to the right. This
ultimately leads to the optimal test (c) with a continuum of scores, for which the demand correspondence (in
black) is flat and coincides with the robust demand curve (in red).

when the set of scores that do not disclose are those weakly below s. Thus, when (1) holds

there is an equilibrium with a disclosure threshold of s. Using G(s) as the marginal CDF on

scores and G(s′|s′ ≤ s) as the conditional CDF on scores no higher than s, the RHS can be

re-written as
∫ s

0
(1−G(s′|s′ ≤ s))ds′. It follows then that Equation 1 is equivalent to

φd =

∫ s

0

G(s′|s′ ≤ s)ds′ =

∫ s
0
G(s′)ds′

G(s)
=

(
d

ds

(
ln(

∫ s

0

G(s′)ds′)
))−1

. (2)

Because the above is true for an interval of scores s, it defines a differential equation whose

solution is G(s) = αe
s
φd for some constant α, i.e., the exponential score distribution.14

We illustrate this solution in Figure 4, where (a) shows the marginal score distribution in

the robustly optimal test. This marginal distribution is generated by a test in which if the value

of the asset is 0, with probability 2/e the test score is 0 and with complementary probability

the test score is distributed exponentially on [1/2, 1], as shown in Figure 4(b), and if the value

of the asset is 1, the test score is distributed exponentially on [1/2, 1], as shown in Figure 4(c).

The testing fee is 0 (by assumption) and the disclosure fee is slightly less than 1/2. This test-

fee structure induces a game with a unique equilibrium: the agent has the asset tested, and

discloses the score if it exceeds the disclosure fee. This leads to partial pooling: if the asset

14The exponential score distribution may bring to mind the work of Roesler and Szentes (2017) and Condorelli
and Szentes (2020). In those papers and in our work, a player optimally chooses a demand curve by manipulating
an information structure or a distribution of values. In those papers, a buyer optimally chooses a unit-elastic
demand curve that leads a seller to charge a low price and be indifferent between that price and higher prices.
In a similar vein, Ortner and Chassang (2018) show that a principal can reduce the cost of monitoring by paying
a monitor wages that generate a unit-elastic demand curve for bribes. In our paper, adversarial equilibrium
selection leads the intermediary to choose a test that generates a rectangular demand curve, which corresponds
to an exponential distribution of scores. The driving force is not to generate any indifference but to eliminate
equilibria in which the agent does not disclose intermediate scores.
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Figure 4: The robustly optimal distribution of scores where (a) G(·) is the marginal probability, (b) G(·|0) is the
conditional probability of scores for θ = 0, and (c) G(·|1) is the conditional probability for θ = 1.

value is low, then with some probability the test generates scores that are disclosed and coincide

with those generated if the asset value is high. If no score is disclosed the market offers a price

of 0. The resulting revenue for the intermediary is ≈ 1
2

(
1− 1

e

)
, which is more than 1/4 but

less than the full surplus of 1/2.

3 Model

3.1 The Setting

A risk-neutral agent sells an asset in a competitive market comprising two risk-neutral buyers

who have a common value for the asset. The agent and both buyers are initially symmetrically

informed about the asset’s market value, θ, knowing only that it is drawn according to a

distribution F with support Θ ⊆ [θ, θ], where 0 ≤ θ < θ <∞ are the lowest and highest values

in Θ, with an expected value of µ.

Prior to selling the asset, the agent can pay an intermediary to evaluate the asset and has

the option, for an additional fee, to disclose that evaluation to the market. We refer to the

evaluation scheme and the fees as a test-fee structure. A test-fee structure comprises:

a. a test, T , that stochastically maps the asset’s value to a score in some set S,15

b. a testing fee, φt ∈ R, which the agent pays for the asset to be evaluated, and

c. a disclosure fee, φd ∈ R, which the agent pays to disclose the score to the market.

Because the test will only be used to determine the asset’s expected value, we henceforth assume

without loss of generality that each test score is an unbiased estimate of the value. That is,

S ⊆ [θ, θ] and for every score s in S, E[θ|s] = s. We denote the set of all tests by T . For each

15Formally, S is a Polish space and the test T : B(S)×Θ→ [0, 1] is a Markov kernel, where B(S) is the Borel
σ-algebra on S. The interpretation is that if the asset value is θ the test generates a random score according to
T (·, θ). Distribution F and test T induce a joint distribution over Θ× S.
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test T , let GT (s) denote the probability that if the intermediary evaluates the asset using test

T , the resulting score is at most s. We refer to GT as the marginal score distribution.

Turning to fees, we denote the pair of testing and disclosure fees by φ ≡ (φt, φd). The

testing fee is the price the intermediary charges to generate information about the asset. The

disclosure fee is the additional price to make that information hard or verifiable so that the

agent can disclose it to the buyers.

We denote a test-fee structure by (T, φ). A test-fee structure (T, φ) induces a game G(T, φ)

between the agent and the buyers, in which (T, φ) is common knowledge. The game has the

following timeline:

1. Nature chooses the value θ of the asset according to the distribution F .

2. The agent, without observing θ, decides whether to have the asset tested. If so, he pays

the testing fee φt and observes a score s drawn according to T .

3. The agent decides whether to disclose the score to the market. If so, he pays the disclosure

fee φd and the buyers observe the score. If he does not disclose, or if he does not have the

asset tested, the buyers observe a null message, N .

4. The buyers bid simultaneously for the asset, and the asset is sold to the highest bidder,

with ties broken uniformly.

The agent’s payoff is the price at which he sells the asset minus any testing and disclosure fees

that he pays. The payoff of the buyer that buys the asset at price p is θ − p; the other buyer’s

payoff is zero.16

In the induced game G(T, φ), an agent’s (behavioral) strategy is (σt, σd), where σt in [0, 1] is

the probability with which he has the asset tested and σd : S → [0, 1] is a measurable function

that specifies the score-contingent probability with which he discloses the score. Buyer i’s

(pure) strategy σi : S ∪ {N} → R specifies buyer i’s bid following a disclosure of score s or

the null message N . A belief system ρi specifies buyer i’s posterior belief about the asset’s

value following a disclosure of score s or the null message N . We denote a strategy profile

σ = (σt, σd, σ1, σ2) and belief system ρ = (ρ1, ρ2) by (σ, ρ).

For a game G(T, φ), we denote the set of Perfect Bayesian Equilibria (PBE) by Σ(T, φ).17

Because the buyers have the same beliefs and compete in a first-price auction, each buyer’s bid

16We have framed our analysis in terms of this market game for concreteness. But the issues and our analysis
apply to other settings in which an agent obtains evidence to persuade others. For example, a principal may
decide how much to invest in a project based on her beliefs about the project’s success, and the agent may
acquire evidence to persuade the principal to invest more. Our model is isomorphic to such a setting if the
principal’s investment increases linearly in her posterior expectation and the agent’s payoff increases linearly in
the principal’s investment.

17Specifically each player behaves in a way that is sequentially rational, beliefs µi are derived via Bayes Rule
whenever possible, and off-path beliefs satisfy “You can’t signal what you don’t know” (Fudenberg and Tirole,
1991). The important implication for our setting is that both on and off the equilibrium path, each buyer’s
posterior expected value after the agent discloses score s is s.

14



is equal to the asset’s expected value given all the available information.

3.2 Maximal Revenue Guarantees

We study the intermediary’s maximal revenue guarantee, namely the highest payoff that she

can guarantee herself by choosing a test-fee structure, i.e., assuming that the equilibrium in the

induced game is chosen adversarially to her interests.

Definition 1. The intermediary’s maximal revenue guarantee is

RM ≡ sup
(T,φ)∈T ×R2

inf
(σ,ρ)∈Σ(T,φ)

σt

(
φt + φd

∫
S

σd(s)dGT

)
. (3)

Recall that σt is the probability with which the agent pays for the intermediary to test the

asset and σd(s) is the probability with which the agent pays to disclose a score of s. The first

term in the parenthesis in (3) is the intermediary’s revenue from the testing fee, and the second

term is the revenue from the disclosure fee.

Why do we study the maximal revenue guarantee? One reason is that any test-fee structure

that has an equilibrium in which the intermediary’s revenue is high also has an equilibrium in

which her revenue is low. To formalize this, consider the full informational surplus RF ≡ µ−θ,
where µ is the expected value of the asset. The full informational surplus is a tight upper

bound on the intermediary’s revenue in any equilibrium.18 But any test-fee structure that has

an equilibrium in which the intermediary obtains the full informational surplus, also has an

equilibrium in which the intermediary obtains 0. We alluded to this fact in the introduction

and in the example in Section 2. In fact, for any test-fee structure in which the intermediary

obtains close to the full informational surplus in some equilibrium, there is another equilibrium

in which the intermediary obtains close to 0.

Proposition 1. There exists δ > 0 such that for any small ε ≥ 0, any test-fee structure that

has an equilibrium in which the intermediary’s revenue is at least RF − ε also has another

equilibrium in which the intermediary’s revenue is at most δ
√
ε.

Proposition 1 formalizes the challenge that multiple equilibria present to the intermediary:

choosing a test-fee structure because its most favorable equilibrium generates a high revenue

leaves the intermediary vulnerable to an equilibrium that generates low or zero revenue. An

immediate implication of Proposition 1 is that the maximal revenue guarantee RM is bounded

away from the full information surplus RF . Our main result, Proposition 2, derives a tight

18The intermediary can extract the full informational surplus using a fully revealing test and an appropriate
testing fee. But she cannot extract more than this because the total surplus in the economy is µ and the market
price of the asset is never lower than θ.
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bound on RM that, for every µ, applies across distributions for which the asset’s expected value

is µ. Because the proof of Proposition 1 uses techniques that we develop later in the paper, we

do not develop the intuition here. The proof and a graphical intuition are in the Appendix.

A separate rationale for focusing on the maximal revenue guarantee is that for any test-fee

structure, an equilibrium that minimizes the intermediary’s revenue also maximizes the agent’s

payoff.19 Thus, if the intermediary worries that the agent and the asset market will coordinate

on the agent’s preferred equilibrium, she would choose a test-fee structure that attains her

maximal revenue guarantee.

Our analysis also shows how to maximize the intermediary’s revenue across test-fee struc-

tures that admit a unique equilibrium. This maximal revenue is clearly at most RM , but

because the robustly optimal test-fee structure that we identify in Proposition 2 has a unique

equilibrium, it is also a solution to this related problem.

4 Preliminary Steps

To simplify the problem of solving for the maximal revenue guarantee, we take the following

preliminary steps:

1. We frame the analysis of tests purely in terms of marginal score distributions.

2. We show that it suffices to consider only those test-fee structures in which the agent pays

the testing fee with probability 1 in every equilibrium.

3. For every such test-fee structure, we characterize the equilibrium with the lowest revenue

for the intermediary in terms of a score threshold for disclosure.

4. Because finding the maximal revenue guarantee involves optimizing with strict constraints,

we formulate a relaxed problem with weak constraints that has the same solution.

4.1 Shifting from Tests to Marginal Score Distributions

For the intermediary’s revenue, all that matters about a test is its marginal score distribution:

for all fees, if two tests have the same marginal score distribution, then they have the same

equilibria.20 Thus, henceforth, we refer to (G, φ) as a test-fee structure, where G is a CDF

on [θ, θ] that corresponds to the marginal score distribution of some test T and φ is a pair of

testing and disclosure fees.

19Notice that the equilibria that maximize the agent’s payoff are the only Pareto efficient ones from the
perspective of the players in the game induced by the test-fee structure.

20Take two test-fee structures (T, φ) and (T ′, φ) such that T and T ′ have the same marginal score distribution.
Take an equilibrium (σ, ρ) of G(T, φ). Suppose that (σ, ρ) were played in G(T ′, φ) and observe that given ρ and
that GT = G′T , the strategy profile σ remains sequentially rational for the agent and the buyers. Moreover,
given σ, ρ continues to satisfy Bayes’ Rule and the appropriate consistency condition. Therefore, (σ, ρ) is an
equilibrium of G(T ′, φ).
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Focusing on the set of marginal score distributions induced by all possible tests is useful

because this set is easy to characterize. Recall that a distribution G is a mean-preserving

contraction of F if its support is in [θ, θ] and
∫ s′
θ
G(s)ds ≤

∫ s′
θ
F (s)ds for all s′ ∈ [θ, θ̄], with

equality at s′ = θ̄. We denote by Γ(F ) the set of distributions that are mean-preserving

contractions of F . We then have the following classical result (Blackwell, 1953; Strassen, 1965).

Lemma 0. A marginal score distribution G is induced by some (unbiased) test if and only if

G is in Γ(F ).

We use this formulation to rewrite revenue guarantees: for a test-fee structure (G, φ), let

Σ̂(G, φ) be the equilibrium set of the induced game between the agent and the market. The

revenue guarantee of (G, φ) is the lowest revenue generated across the equilibria of this test-fee

structure: R(G, φ) ≡ inf(σ,ρ)∈Σ̂(G,φ) σt
(
φt + φd

∫
S
σd(s)dG

)
. The maximal revenue guarantee is

thus RM = sup(G,φ)∈Γ(F )×R2 R(G, φ).

4.2 Using Option Value as a Carrot

We show that in every test-fee structure, either the asset is tested with probability 1 in every

equilibrium or there exists an equilibrium in which the asset is tested with probability 0 (and

the intermediary’s revenue is 0).

Lemma 1. If a test-fee structure (G, φ) satisfies

φt <

∫ θ̄

µ+φd

[s− (µ+ φd)]dG, (P)

then the asset is tested with probability 1 in every equilibrium; otherwise, there exists an equi-

librium in which the asset is tested with probability 0.

The logic of Lemma 1 is that (P) is a participation constraint that must hold for the asset

to be tested with positive probability in every equilibrium. To see why, consider a test-fee

structure (G, φ) and an equilibrium in which the asset is tested with probability 0. Because

the market expects non-disclosure with probability 1, the price of the asset conditional on non-

disclosure is µ. If the agent deviates and has the asset tested, then he optimally pays φd to

disclose the score whenever it is higher than µ+ φd. This deviation is strictly profitable if

µ < −φt +

∫ θ

θ

max{µ, s− φd}︸ ︷︷ ︸
Option Value

dG,
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which, by re-arranging, yields (P). Thus, the asset is tested with positive probability in every

equilibrium if and only if (P) holds. The proof of Lemma 1 shows if (P) holds, the asset is in

fact tested with probability 1 in every equilibrium.

This result also allows us to show that it suffices to restrict attention to non-negative fees:

for any test-fee structure with a negative testing or disclosure fee, the intermediary can improve

her revenue guarantee by using a test-fee structure that has non-negative fees.

Lemma 2. For any test-fee structure (G, φ) with φd < 0 or φt < 0, there exists a test-fee

structure (G′, φ′) with non-negative fees such that R(G, φ) < R(G′, φ′).

4.3 Adversarial Disclosure Thresholds

For any test-fee structure that satisfies (P), an adversarial equilibrium is one that minimizes

the disclosure probability while having the asset tested with probability 1. We show that such

equilibria are threshold equilibria in which the agent discloses the score if it strictly exceeds the

threshold.

With Lemmas 1 and 2 in hand, we restrict attention to test-fee structures that satisfy (P)

and have non-negative disclosure fees. Given a test-fee structure (G, φ), consider thresholds τ

that weakly exceed sG, where sG is the lowest score in the support of G. We say that such a

threshold τ is an equilibrium threshold for a test-fee structure (G, φ) if

τ − φd = EG[s|s ≤ τ ]. (4)

If τ satisfies (4), then there is an equilibrium in which the agent discloses the score if and only

if it strictly exceeds τ . To see why, suppose that the agent behaves in this way and (4) holds.

Then the LHS of (4) is the difference between the market price of the asset when a score of

τ is disclosed and the disclosure fee, and the RHS is the market price for the asset when no

score is disclosed. Thus, the agent is indifferent between disclosing and not disclosing a score

of τ . Because the market price following disclosure increases in the score but the market price

following non-disclosure is constant in the score, the agent strictly prefers not to disclose scores

lower than τ and to disclose scores higher than τ .

A test-fee structure may have multiple equilibrium thresholds. It may also have other

equilibria, in which if the agent obtains a threshold score, he chooses to disclose his score with

strictly positive probability rather than probability 0. The mixed strategy equilibria for the

fully revealing and the 3-score tests in Section 2 are examples of such equilibria. We prove

in Lemma 3 below that from the standpoint of adversarial equilibrium selection, it suffices to

focus on equilibria in which the agent discloses his score only if it strictly exceeds the threshold.

We proceed as follows. For each test-fee structure, we show that a highest equilibrium
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threshold exists and provide a characterization of the highest equilibrium threshold that we later

use to find the robustly optimal test-fee structure. We then show that this highest equilibrium

threshold corresponds to an adversarial equilibrium in which the agent discloses his score if and

only if it strictly exceeds this threshold.

Lemma 3. If a test-fee structure (G, φ) satisfies (P) and φd ≥ 0, then the following are true:

(a) A highest equilibrium threshold τ exists.

(b) A score threshold τ ≥ sG is the highest equilibrium threshold if and only if

τ − φd = EG[s|s ≤ τ ],

τ ′ − φd > EG[s|s ≤ τ ′] ∀τ ′ > τ.
(HE)

(c) There exists an adversarial equilibrium in which the agent discloses score s if and only if

s > τ , where τ is the highest equilibrium threshold.

Figure 5 illustrates our characterization of the highest equilibrium threshold.

τ − E[s|s ≤ τ ]

Fee

θ Threshold Scoreτ1 τ3τ2 θ

θ − µ

φd

Figure 5: The adversarial equilibrium for a given disclosure fee is the equilibrium with the highest equilibrium
threshold. For example, with a disclosure fee of φd, the highest equilibrium threshold is τ3.

4.4 A Relaxed Problem with an Identical Value

We have seen that if a test-fee structure satisfies (P), then the agent takes the test with prob-

ability 1 and the adversarial equilibrium is characterized by the highest equilibrium threshold.

The revenue guarantee in the robustly optimal test-fee structure is therefore

RM = sup
(G,φ,τ)∈Γ(F )×R3

φt + φd(1−G(τ)) s.t. (P) and (HE).

The intermediary’s maximization problem has constraints with strict inequalities, but we show

that the problem’s value RM is unchanged if those inequalities are made weak. These are the
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weak participation constraint

φt ≤
∫ θ̄

µ+φd

[s− (µ+ φd)]dG (w-P)

and the weak-highest equilibrium constraint (which defines the weak-highest equilibrium thresh-

old),

τ − φd = EG[s|s ≤ τ ]

τ ′ − φd ≥ EG[s|s ≤ τ ′] ∀τ ′ > τ.
(w-HE)

We write the relaxed problem as

max
(G,φ,τ)∈Γ(F )×R3

φt + φd(1−G(τ)) s.t. (w-P) and (w-HE).

In addition to having a solution and the same value as the original problem, the relaxed

problem has several attractive features. First, for any test-fee structure that solves the relaxed

problem, there is a “nearby” test-fee structure whose revenue guarantee is close to the maximal

revenue guarantee RM . Second, for any convergent sequence of test-fee structures that achieves

the maximal revenue guarantee, the limiting test-fee structure is a solution to the relaxed

problem. Thus, solutions to the relaxed problem identify necessary and sufficient features of

test-fee structures whose revenue guarantees approximate RM . We call these solutions robustly

optimal test-fee structures.

Let us formalize this discussion. A sequence of test-fee structures {(Gn, φn)}n=1,2,... converges

to a test-fee structure (G, φ) if Gn converges weakly to G and φn converges to φ. For a test-

fee structure (G, φ) and equilibrium threshold τ , we denote the associated revenue for the

intermediary by R̂(G, φ, τ). We use this notation to link the relaxed and original problems.

Lemma 4.

(a) An optimal solution (G, φ, τ) to the relaxed problem exists and RM = R̂(G, φ, τ).

(b) Consider any optimal solution (G, φ, τ) to the relaxed problem. Then there exists a se-

quence of test-fee structures and thresholds {(Gn, φn, τn)}n=1,2,... such that (i) for each n,

(Gn, φn, τn) satisfies (P) and (HE), (ii) (Gn, φn) converges to (G, φ), and (iii) RM =

limn→∞ R̂(Gn, φn, τn).

(c) Consider any sequence of test-fee structures and thresholds {(Gn, φn, τn)}n=1,2,... such that

(i) for each n, (Gn, φn, τn) satisfies (P) and (HE), (ii) (Gn, φn) converges to a test-fee

structure (G, φ), and (iii) RM = limn→∞ R̂(Gn, φn, τn). Then there exists τ such that

(G, φ, τ) satisfies (w-P) and (w-HE), and RM = R̂(G, φ, τ).
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5 Robustly Optimal Test-Fee Structures

This section contains our main result. We show that robustly optimal test-fee structures use

tests that have a “step-exponential-step” form; i.e., the distributions over scores are exponential

over an interval, have up to two mass points, one above and one below the interval, and have

zero density everywhere else. We also show that the optimal disclosure fees are strictly positive,

and we derive a tight bound on the intermediary’s maximal revenue guarantee.

1

θ

G(s)

sθ τ0 τ1 τ2 τ3

κ

Figure 6: A step-exponential-step distribution G.

As illustrated in Figure 6, a test-fee structure (G, φ) is in the step-exponential-step class if

there exists κ ∈ [0, 1] and thresholds τ0 < τ1 < τ2 ≤ τ3 such that

G(s) =


κ if s ∈ [τ0, τ1)

κe(s−τ1)/(τ1−τ0) if s ∈ [τ1, τ2]

1 if s ≥ τ3,

(5)

G assigns probability 0 to [0, τ0) ∪ (τ2, τ3), and the fees are

φd = τ1 − τ0, (6)

φt = (1− κe(τ2−τ1)/φd)(τ3 − (µ+ φd)). (7)

Proposition 2. For any distribution F of the asset’s value, the following hold:

(a) There exists a test-fee structure in the step-exponential-step class that is robustly optimal.

(b) Every robustly optimal test-fee structure has a strictly positive disclosure fee.

(c) If (G, φ) is a robustly optimal test-fee structure, then the testing fee φt is strictly positive

if and only if scores in (µ+ φd, θ] arise with positive probability.

(d) The maximal revenue guarantee is at most (θ − µ)(1 − e(θ−µ)/(θ−µ)), and this bound is

attained when the support of F is binary, i.e., {θ, θ}.

21



Proposition 2 partially characterizes the robustly optimal test-fee structures, and provides

a tight upper bound on the maximal revenue guarantee.21 There is always a robust solution

in the step-exponential-step class, the disclosure fee is strictly positive in any robust solution,

and the testing fee is strictly positive if and only if the robustly optimal score distribution has

a step at the top.

In the robustly optimal test in the step-exponential-step class, the score τ0 can be interpreted

as a “failing” score and the scores in [τ1, τ3] can be interpreted as “passing” scores. Even if the

support of the distribution of asset values is finite, the test uses a continuum of scores. Because

the passing scores are distributed exponentially with a potential step at the top, the robustly

optimal test assigns higher passing scores more frequently than lower passing scores.

We show after the proof of Proposition 2(a) that if the intermediary uses this test, charges

the testing fee in (7) and a disclosure fee slightly below those in (6), then this test-fee structure

has a unique equilibrium. In this equilibrium, the asset is tested with probability 1 and the

agent discloses his score whenever it exceeds τ1. If the agent does not disclose a score, he

obtains a market price of τ0. Therefore, the distribution of market prices involves an atom at

τ0, an exponential distribution on [τ1, τ2], and potentially an atom at τ3.

We can use the robust demand curve approach described in Section 2 to obtain an intuition

for Proposition 2(a). Consider a test-fee structure with disclosure fee φd in which the probability

of disclosure in an adversarial equilibrium is q. Suppose, as is shown in Figure 7(a), that

the demand correspondence is not flat to the left of the point (q, φd). Then we can modify

the test-fee structure and improve the intermediary’s robust revenue as follows: flatten the

demand correspondence to the left of (q, φd) and push it to the right of (q, φd) by changing

the test score distribution. Doing this increases the disclosure probability in the adversarial

equilibrium for any disclosure fee slightly lower than φd. Moreover, as seen in Figure 7(b),

this modification can be done without changing the score distribution on scores above µ +

φd, so the option value of a test, given by the RHS of (P), remains unchanged. Therefore,

this modification does not generate a new equilibrium in which the agent doesn’t pay the

testing fee. Thus, the intermediary can increase the probability of disclosure by decreasing

the disclosure fee arbitrarily slightly and without changing the testing fee, which improves her

revenue guarantee.22

A similar logic shows that in fact every robustly optimal test-fee structure has a score

distribution that is exponential over a non-degenerate interval (Lemma 11 in the Appendix).

21Proposition 1 already established that the maximal revenue guarantee is bounded away from full surplus,
but the bound provided was not tight.

22A reader may wonder how this is possible while the total surplus is constant and (w-P) (defined on p. 20)
binds. This is because (w-P) is a non-standard participation constraint. The modification to the test decreases
the agent’s payoff in the adversarial equilibrium without affecting his indifference between paying the testing
fee and not paying it if the market expects him not to pay it, which is what (w-P) represents.
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Figure 7: How an intermediary gains from “flattening” the robust demand curve. (a) depicts a demand curve
in blue, and by flattening the demand curve the intermediary can induce a higher probability of disclosure at
disclosure fee φd. (b) shows that this can be done without changing the score distribution above µ + φd, which
guarantees that (P) continues to be satisfied without changing the testing fee.

Outside of that interval, there is some flexibility because scores below τ1 are those that the agent

strictly prefers not to disclose, and scores above µ + φd, which exceeds τ2, are those for which

(HE) is slack. In the step-exponential-step distribution scores below τ1 are pooled as a single

score and scores above µ + φd are pooled as a single score. This creates a score distribution

that is a mean-preserving contraction of the distribution F of the asset value. But there may

be other robustly optimal distributions that are the same on the interval [τ1, τ2] and are also

mean-preserving contractions of F .

Turning to disclosure fees, we prove Proposition 2(b) by contradiction. We show that if

the intermediary did not charge a disclosure fee, then the maximal revenue guarantee would

come from charging only testing fees and using a binary test. But we can improve upon this by

using a test-fee structure with a step-exponential distribution and strictly positive disclosure

fees. Therefore, a robustly optimal test-fee structure charges strictly positive disclosure fees.

Proposition 2(c) follows from the participation constraint (P). If scores in (µ + φd, θ] arise

with positive probability, then even if the market expects the asset to not be tested, the agent

strictly prefers to have the asset tested at a testing fee of 0 and a disclosure fee of φd. Increasing

the testing fee slightly while keeping the disclosure fee unchanged increases the intermediary’s

revenue in the adversarial equilibrium and does not generate a new equilibrium in which the

asset is not tested. We use this logic in Proposition 4 below to provide conditions on primitives

that guarantee a strictly positive testing fee. Building on this logic, Proposition 9 in the Online

Appendix shows that extracting revenue with a testing fee is in fact the only reason that scores

above µ + φd may exist. Namely, if the intermediary is restricted to only use disclosure fees

(i.e., testing must be free), then there exists a test-fee structure in the step-exponential-step

class that is robustly optimal and in which there is no score above µ+ φd.

We prove Proposition 2(d) by considering a relaxed problem in which the score distribution
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need not be a mean-preserving contraction of distribution F , while still having the same expec-

tation, i.e., EG[s] = EF [θ]. We solve this relaxed problem completely, and its value provides an

upper bound on the maximal revenue guarantee. This bound is tight when the support of F is

binary because the mean-preserving contraction condition is then equivalent to EG[s] = EF [θ].

The following result describes the complete solution for this case.

Proposition 3. Suppose that the support of distribution F is {θ, θ}. The unique robustly

optimal test-fee structure includes:

(a) No testing fee but a strictly positive disclosure fee: φ∗t = 0 and φ∗d = θ − µ.

(b) The following marginal score distribution that has an atom at θ, a gap above it, and then

an exponential form (with no atom at the top):

G∗(s) =

e(θ−µ)/(θ−µ) if s ∈ [θ, θ + θ − µ)

e(s−θ)/(θ−µ) if s ∈ [θ + θ − µ, θ].
(8)

The resulting revenue guarantee is RM = (θ − µ)(1− e(θ−µ)/(θ−µ)).

Proposition 3 shows that for binary asset values {θ, θ}, there is a unique robustly optimal

test-fee structure. The robustly optimal test has an atom at the lowest possible score θ and

an exponential distribution on the interval [θ + θ − µ, θ]. The disclosure fee is the only source

of revenue. In the adversarial equilibrium, the asset is always tested and the agent pays the

disclosure fee whenever the realized score is in (θ + θ − µ, θ].
The test and equilibrium can be interpreted as follows. The score θ is a “failing” score and

the scores in the interval (θ + θ − µ, θ] are “passing” scores. If the asset value is high, the test

always generates a passing score. But if the asset value is low, the test generates a passing score

with an interior probability. The test is “noisy” in that passing scores partially pool low and

high asset values.23 By partially pooling low and high asset values, the intermediary obtains

revenue not only when the asset value is high but with some probability also when the asset

value is low.

Let us compare this maximal revenue guarantee with the maximal revenue the intermediary

could obtain if she could select not only the test-fee structure but also the equilibrium. Recall

from Section 3.2 that if the intermediary could select the equilibrium, then she could extract the

full informational surplus RF = µ−θ by using a fully revealing test and charging a high testing

fee. We consider the ratio RM/RF , where RM is the revenue guarantee from Proposition 3.

23If the asset value is low, the agent obtains a passing score with probability 1− (θ − θ)e(θ−µ)/(θ−µ)/(θ − µ).
Holding the high and low values fixed, increasing the probability of the high value (i.e., a first-order stochastically
dominating shift of the value distribution F ) increases the conditional probability that a low value asset obtains
a passing score. Holding the ex ante probability of the high value fixed, this conditional probability does not
vary with the low and high values.

24



Holding θ and θ fixed in the binary case, the ratio RM/RF is decreasing in the expected

value µ of the asset. In other words, the impact of adversarial equilibrium selection on the

intermediary’s revenue increases with the probability that the asset value is high.

We know from Proposition 2 that the robustly optimal disclosure fee is always strictly

positive; Proposition 3 shows that the robustly optimal testing fee may be 0. We now provide

a sufficient condition on the distribution F for the optimal testing fee to be strictly positive.

Proposition 4. If the distribution F of the asset’s value is log-concave and has a strictly

positive density, then any robustly optimal test-fee structure includes a strictly positive testing

fee.

Several commonly studied distributions, such as the uniform distribution over [θ, θ] and the

truncated Normal and Pareto distributions, are log-concave (Bagnoli and Bergstrom, 2005).

Log-concavity requires the tail of the distribution to be less heavy than the tail of the exponential

distribution.

6 Extensions

This section considers three extensions. Section 6.1 describes a connection between charging

only testing fees and binary certification, i.e., tests with only two scores. Section 6.2 shows that

our results also hold when testing is costly for the intermediary. A special case is when the

set of tests available to the intermediary is restricted. Section 6.3 shows that the intermediary

does not gain from being able to offer the agent multiple pieces of evidence.

6.1 Binary Certification and Testing Fees

A commonly observed form of certification is when the intermediary uses a test with only two

possible scores (e.g., “pass / fail”). We show that such binary certification is robustly optimal

if the intermediary can charge only a testing fee. We also show that if the intermediary is

restricted to using binary certification, then charging only a testing fee is sufficient. Thus, our

analysis draws a connection between binary certification and charging only upfront fees.

To sees this, suppose first that the intermediary can charge only a testing fee. We say that

a test G is binary if its support comprises two (distinct) scores.

Proposition 5. If the intermediary is restricted to charging only a testing fee, there exists a

robustly optimal test-fee structure that includes:

(a) A binary test with a high score sH ≡ E[θ|θ ≥ µ] and a low score sL ≡ E[θ|θ < µ].

(b) A strictly positive testing fee that makes the agent’s participation constraint (w-P) bind.
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Proposition 5 shows that if the intermediary can charge only a testing fee, she can achieve

her maximal revenue guarantee with a binary test. Moreover, the robustly optimal binary test,

which is unique up to specifying which score to assign to an asset value that is exactly equal

to µ, has an appealing structure. It distinguishes above average asset values from those that

are below average: the high score sH pools together all above average asset values, and the low

score sL pools together all below average asset values.

To see why Proposition 5 holds, it is helpful to contrast the setting here with our general

model. In the general model, the intermediary’s revenue guarantee comes from the agent paying

the testing fee and, with some probability, the disclosure fee. For a fixed positive disclosure

fee, changing the test to maximize the option value enables the intermediary to charge a higher

testing fee. But changing the test may also introduce equilibria in which the agent discloses

the score with low probability, so the intermediary’s revenue guarantee may in fact decrease.

In the setting of Proposition 5, the intermediary cannot charge a disclosure fee. Therefore, the

option value of a test is the intermediary’s only source of revenue, so she chooses a test that

maximizes this option value. The binary test described above achieves this.24

In the opposite direction, suppose that the intermediary can use only binary tests.

Proposition 6. If the intermediary is restricted to using only binary tests, there exists a robustly

optimal test-fee structure that includes:

(a) The binary test described in Proposition 5.

(b) No disclosure fee and a strictly positive testing fee that makes the agent’s participation

constraint (w-P) bind.

The argument underlying Proposition 6 is that once restricted to binary tests, the interme-

diary cannot guarantee herself a revenue higher than the option value of the test. The “above

/ below average” binary test identified in Proposition 5 maximizes this option value. She can

then extract the entire option value by charging the testing fee that makes the participation

constraint (w-P) bind. She does not gain from using a disclosure fee because any increase in

revenue from the disclosure fee is offset by a reduction in the testing fee required to satisfy

(w-P).

Proposition 5 and Proposition 6 connect two features that appear in some markets for hard

information: the use of testing fees (without disclosure fees) and binary certification. Our

analysis shows that if an intermediary is restricted to choosing a test-fee structure that satisfies

one of these two features, then it is robustly optimal for her to choose a test-free structure that

satisfies the other feature. This also shows that the value of charging disclosure fees and using

richer tests, as in Proposition 2, comes from the intermediary’s ability to do both simultaneously.

24In fact, any test that assigns scores weakly higher than µ to asset values higher than µ, and scores lower
than µ to asset values lower than µ maximizes the option value. Thus, a fully revealing test is also robustly
optimal when the intermediary can charge only testing fees.
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Relatedly, we see from this analysis that regulations that restrict the intermediary to charging

only a testing fee or using only binary tests can improve the agent’s welfare. But these results

also imply that, even with these restrictions, the intermediary can still extract surplus from the

agent.

6.2 Costly Tests

Our analysis assumed that testing is costless for the intermediary, but in reality, evaluating

the asset may be costly for her. Suppose that the intermediary incurs a cost of c(G) when

conducting a test whose marginal score distribution is G. We assume that c is monotone in

the Blackwell order, that is, garbling a test weakly reduces its cost; in other words, whenever

G′ is a mean-preserving contraction of G, c(G′) ≤ c(G).25 This condition is standard when

information acquisition is costly, and corresponds to a less informative test being less costly.26

A special case is when the intermediary starts with a finite set of initial tests and can costlessly

garble those tests to obtain additional tests.

The following is a corollary of our existing results.

Proposition 7. With costly testing, there exists a robustly optimal test-fee structure in the

step-exponential-step class, and every robustly optimal test-fee structure uses a strictly positive

disclosure fee.

Proposition 7 is a corollary of Lemma 11 in the Appendix, which is one of the steps in the

proof of Proposition 2. Lemma 11 shows that for any test-fee structure (G, φ), there exists a

test-fee structure in the step-exponential-step class that uses a mean-preserving contraction of

G and has a weakly higher revenue guarantee. Because such a test-fee structure is a garbling

of G, it has a weakly lower cost. Therefore, there exist a robustly optimal test-fee structure in

the step-exponential-step class.27 The argument used to prove Proposition 2 proves that the

optimal disclosure fee is strictly positive.

6.3 Multiple Pieces of Evidence

Our analysis assumed that the intermediary provided the agent with a single piece of evidence

that he could verifiably disclose. One could envision the intermediary providing the agent with

multiple pieces of evidence and a choice of which to disclose. We show that this additional

generality does not change the robustly optimal test-fee structures.

25To guarantee that a solution to the relevant maximization problem exists, we assume that c is lower semi-
continuous with respect to the weak* topology.

26Two recent studies that assume monotonicity in the Blackwell order are De Oliveira, Denti, Mihm, and
Ozbek (2017) and Pomatto, Strack, and Tamuz (2019).

27Moreover, if costs are strictly monotone in the Blackwell order, this argument implies that every robustly
optimal test-fee structure is in the step-exponential-step class.
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To see this, suppose that the intermediary designs, along with the test-fee structure, an

arbitrary evidence structure, which specifies a message spaceM and the set of messages avail-

able for each score, described by M : S ⇒M. We call this an evidence-test-fee structure. Our

baseline model corresponds to M(s) = {s} for every score s. The agent first decides whether

to have the asset tested and pay the testing fee φt. If he pays the testing fee, he observes the

test score s. Then, if the agent pays the disclosure fee φd, he can disclose a message m in M(s)

to the buyers. If the agent does not have the asset tested or does not disclose any message, the

buyers observe the null message N . The following result shows that using evidence-test-fees

structures does not improve the maximal revenue guarantee.

Proposition 8. For any evidence-test-fee structure and any adversarial equilibrium of the

induced game, there exists a test-fee structure that has an adversarial equilibrium with the same

revenue for the intermediary.

If the intermediary chose the equilibrium in addition to the test-fee structure, Proposition 8

would follow from the logic of the revelation principle. But adversarial equilibrium selection

introduces a new consideration: because in the game induced by an evidence-test-fee struc-

ture the agent has more actions than in the game induced by a test-fee structure, it also has

more deviations, and these deviations may exclude strategy profiles that would otherwise be

equilibria. Thus, it is conceivable that under adversarial equilibrium selection some evidence-

test-fee structure generates a higher revenue for the intermediary than any test-fee structure.

We show this is not the case. Consider an adversarial equilibrium of a game induced by an

evidence-test-fee structure with fees φ. This equilibrium generates a distribution G̃ of equilib-

rium prices paid to the agent. The equilibrium also includes a critical price p̃ such that the

agent is indifferent between disclosing any evidence that leads to price p̃ and non-disclosure.

We show that (G̃, φ, p̃) satisfies constraints (P) and (HE). Therefore the test-fee structure

(G̃, φ) has a highest equilibrium threshold of p̃ and an identical revenue guarantee to that of

the evidence-test-fee-structure.

7 Conclusion

Sellers of financial or physical assets often disclose to buyers hard information purchased from an

information intermediary, such as a credit rating agency or an appraiser, about the value of the

assets. One rationale for the existence of such information intermediaries is that their presence

generates economic value by, for example, mitigating moral hazard or facilitating assortative

matching. A less obvious rationale for the presence of such intermediaries, even if they provide

no economic value, is that once sellers of assets have the option to obtain hard information
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from an intermediary, potential buyers may have an unfavorable view of assets whose sellers do

not disclose favorable information.

Our paper investigates the scope of this second rationale. In a setting in which information

has no social value, we study how an intermediary designs and prices evidence for a disclosure

game between an asset owner and the asset market. Our main finding is that even if the

equilibria of the disclosure game are chosen to minimize the intermediary’s revenue, she can

still guarantee herself a high revenue across equilibria. We study how she accomplishes this.

First, she uses option value as a carrot. The agent prefers not to have the asset tested and

for the market to believe that the asset has not been tested. To prevent the agent from credibly

refraining from testing, the intermediary chooses a test-fee structure that is irresistible because

of its option value: the test has sufficiently high scores and the fees are sufficiently low that

even if the market were to believe that the agent has refrained from testing, he cannot resist

having the asset tested and disclosing high scores. In equilibrium, the market then correctly

expects the agent to have the asset tested, and treats non-disclosure with prejudice. In this

way, the intermediary guarantee herself revenue by exploiting the agent’s inability to commit.

Second, the intermediary optimally uses positive disclosure fees and noisy tests. To develop

an intuition for the optimal combination of test and fees we propose a demand curve approach

in which every test corresponds to a robust demand curve, and the intermediary can be thought

of as choosing an optimal price on an optimal robust demand curve. The optimal disclosure fee

maximizes the area of a rectangle under the robust demand curve, so the optimal robust demand

curve has a rectangular component, which leads to an exponential distribution of scores.

Our analysis may shed light on some strategic forces in the context of credit ratings. In the

credit rating industry, it is common for a rating agency to offer an informal “shadow rating” to

an issuer of a financial instrument and charge the issuer only if he would like to complete the

rating process so the rating can be disclosed to potential investors. Our work illustrates that a

credit rating agency may use shadow ratings and disclosure fees to make it difficult for issuers

to credibly refrain from obtaining a rating. The step-exponential-step distribution identified in

Proposition 2 shows that the credit rating agency should (i) use a large number of scores even

if the number of possible asset values is small, (ii) assign higher scores more frequently than

lower ones, and (iii) generate bunching at the lowest score and sometimes at the highest score.

These normative implications are consistent with a concern that credit rating agencies may

distort rating schemes to maximize revenue. Finally, parts (b) and (c) of Proposition 2 shows

that a credit rating agency should always charge a disclosure fee but only charge a testing fee

if the agency chooses to have bunching at the highest score.

As caveats to our analysis, let us highlight the role of a few important assumptions. First,

we have focused on two-part tariffs, which are often used in practice. It would be interesting to

study a broader range of pricing structures, including disclosure fees that depend on the realized
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test score and fees paid by prospective buyers of the asset. Second, we have assumed that the

intermediary can commit to a rating scheme (in line with recent work on information design

and certification). This is often rationalized on the basis of dynamic or reputational incentives,

but it may be interesting to investigate a model with weaker forms of commitment.28 Third,

we have focused on a monopolistic intermediary. With multiple intermediaries, the asset owner

may be able to “shop around” and disclose his favorite rating. The ability to shop around may

benefit the asset owner by allowing him to keep more of the surplus. However, this ability

could also lead the market to draw inferences from the number of scores disclosed, which in

turn could generate a “rat race” that compels the asset owner to disclose multiple scores. This

effect would complement the negative inferences the market draws from non-disclosure in our

model with a single intermediary. By increasing pressure on the asset owner to disclose hard

information, the presence of competing intermediaries may end up hurting the asset owner.

Identifying the conditions under which one effect dominates the other may be an interesting

direction for future research.
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A Appendix

A.1 Proof of Lemma 1 on p. 17.

Proof. Consider a test-fee structure (G, φ) that satisfies (P). Assume towards a contradiction

that there exists an equilibrium in which the agent has the asset tested with probability strictly

less than 1. In this equilibrium, let pN be the price that the agent obtains when he does not

disclose his score. The agent discloses his score if s − φd > pN and does not disclose his score

if s − φd < pN . Therefore, the expected value conditional on non-disclosure is no higher than

the prior expected value: pN ≤ µ.

Because the agent has the asset tested with probability strictly less than 1, his equilibrium

payoff is pN . Consider the following deviation: having the asset tested with probability 1,

and disclosing a score of s if and only if s > pN + φd. The payoff from this deviation is
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−φt+
∫ θ
pN+φd

(s−φd)dG+
∫ pN+φd
θ

pNdG, where the first term is the testing fee, the second is the

payoff from disclosing scores higher than pN + φd, and the third is the payoff from concealing

scores lower than pN + φd. This deviation is profitable because

−φt +

∫ θ

pN+φd

(s− φd)dG+

∫ pN+φd

θ

pNdG− pN = −φt +

∫ θ

pN+φd

(s− pN − φd)dG

≥ −φt +

∫ θ

µ+φd

(s− µ− φd)dG

> 0,

where the first inequality follows from pN ≤ µ and the second inequality follows from (P).

Therefore, the agent has the asset tested with probability 1 in every equilibrium.

Now consider a test-fee structure (G, φ) that violates (P), so

φt ≥
∫ θ

µ+φd

[s− (µ+ φd)]dG. (9)

Suppose the agent has the asset tested with probability 0 (and off-path discloses scores weakly

greater than µ+ φd). The price following non-disclosure is µ. This constitutes an equilibrium.

First, the agent’s behavior is sequentially rational. Second, by deviating and taking the test,

the agent’s expected payoff is no higher than µ:

∫ µ+φd

θ

µdG+

∫ θ

µ+φd

[s− φd]dG− φt = µ+

∫ θ

µ+φd

[s− (µ+ φd)]dG− φt ≤ µ,

where the inequality follows from (9). �

A.2 Proof of Lemma 2 on p. 18

Proof. We first show that the intermediary can obtain positive revenue robustly by using non-

negative fees. To see this, consider a test-fee structure (G′, φ′), where G′ = F , φ′d = 0, and

φ′t > 0. Because F is non-degenerate, we have F (µ) < 1. So G′(µ+φ′d) < 1 and the right hand

side of (P),
∫ θ
µ+φ′d

[s − (µ + φ′d)]dG
′, is strictly positive. Thus, for sufficiently small φ′t > 0 the

test-fee structure (G′, φ′) satisfies (P). By Lemma 1, R(G′, φ′) = φ′t > 0.

Now consider any test-fee structure (G, φ). If R(G, φ) ≤ 0, then, as argued above, there

exists (G′, φ′) with non-negative fees such that R(G, φ) < R(G′, φ′), and the lemma follows.

So suppose for the rest of the proof that R(G, φ) > 0, which by Lemma 1 implies that (G, φ)

satisfies (P) and the agent has the asset tested with probability 1.

If φd < 0, then it is straightforward to show that in every equilibrium of (G, φ), all scores
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disclose, so 0 < R(G, φ) = φt + φd. Set G′ = G, φ′d = 0, and φ′t = φt + φd + ε. Integration by

parts shows that the right hand side of (P) plus φ′d,∫ θ

µ+φ′d

[s− (µ+ φ′d)]dG
′ + φ′d = −

∫ θ

µ+φ′d

G(s)ds+ θ − µ,

is increasing in φ′d. Therefore, since φ′d > φd, we have φt + φd <
∫ θ
µ+φd

[s− (µ + φd)]dG + φd ≤∫ θ
µ+φ′d

[s − (µ + φ′d)]dG
′. So for small enough ε > 0, (G′, φ′) satisfies (P) and R(G′, φ′) = φ′t >

R(G, φ).

Now suppose φt < 0 and φd ≥ 0. If
∫ θ
µ+φd

[s− (µ + φd)]dG = 0, then G(µ + φd) = 1, which

implies that τ = µ + φd is the threshold satisfying (HE), and therefore R(G, φ) = φt + 0 < 0.

So it must be that
∫ θ
µ+φd

[s − (µ + φd)]dG > 0, but then the test-fee structure (G′, φ′), where

G′ = G, φ′d = φd, and φ′t = 0 > φt, satisfies (P). Because the disclosure decision does not

depend on the testing fee (since φt does not appear in (HE)), the test-fee structure (G′, φ′) has

the same highest equilibrium threshold as does (G, φ), and so R(G′, φ′) > R(G, φ). �

A.3 Proof of Lemma 3 on p. 19

The following lemma is used in our proof.

Lemma 5. Suppose f is an increasing function defined on [a, b] ⊂ R, and g is a continuous

function defined on [a, b]. If f(a) ≥ g(a) and f(b) ≤ g(b), there exists x∗ ∈ [a, b] such that

f(x∗) = g(x∗). Moreover, x̄ = max{x|f(x) = g(x)} exists and x̄ = sup{x ∈ [a, b]|f(x) ≥ g(x)}.

Proof. Let S ≡ {x ∈ [a, b]|f(x) ≥ g(x)} and x̄ ≡ supS (the supremum is well defined because S

is non-empty and bounded above by b). Consider an increasing sequence xn ∈ S that converges

to x̄. Since f is an increasing function, f(x̄) ≥ limn→∞ f(xn). Because xn ∈ S, we have

f(xn) ≥ g(xn), so

f(x̄) ≥ lim
n→∞

f(xn) ≥ lim
n→∞

g(xn) = g(x̄),

where the equality holds because g is continuous.

Now we prove that f(x̄) = g(x̄). Suppose towards a contradiction that f(x̄) > g(x̄), so

x̄ < b. Because g is continuous, f(x̄) > g(x̄+ ε) for some ε ∈ (0, b− x̄). Since f is increasing,

f(x̄+ ε) ≥ f(x̄) > g(x̄+ ε),

which contradicts x̄ = supS. Moreover, since by definition f(x) < g(x) for all x /∈ S, it follows

that x̄ = max{x|f(x) = g(x)}. �
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Proof of Lemma 3(a). A threshold τ is an equilibrium threshold if and only if

EG[s|s ≤ τ ] = τ − φd.

Define a(τ) = EG[s|s ≤ τ ] and b(τ) = τ − φd. Since a(τ) is bounded above by µ and

b(τ) → ∞ as τ → ∞, there exists τ̄ large enough such that a(τ) < b(τ) for all τ ≥ τ̄ . So any

equilibrium threshold τ must be in [sG, τ̄ ].

We have a(sG) = sG ≥ b(sG) and a(τ̄) ≤ b(τ̄), a is increasing, and b is continuous. Therefore,

Lemma 5 shows that the set of equilibrium thresholds is non-empty and a highest equilibrium

threshold exists. �

Proof of Lemma 3(b). The “if” part is immediate from the definition of the highest equilibrium

threshold. For the “only if” part, suppose that τ is the highest equilibrium threshold of the

test-fee structure (G, φ), so τ − φd = E[s|s ≤ τ ] and for all τ ′ > τ , τ ′ − φd 6= E[s|s ≤ τ ′]. We

show that in fact τ ′ − φd > E[s|s ≤ τ ′] for all τ ′ > τ .

Suppose towards a contradiction that for some τ ′ > τ we have τ ′−φd < E[s|s ≤ τ ′]. Define

a, b, τ̄ as in the proof of Lemma 3(a). Since a(τ ′) > b(τ ′), a(τ̄) ≤ b(τ̄), a is increasing, and b

is continuous, Lemma 5 shows that some τ ∗ in (τ ′, τ̄ ] ⊂ (τ, τ̄ ] is an equilibrium threshold, a

contradiction. �

Proof of Lemma 3(c). We show that the agent disclosing a score if and only if the score exceeds

the highest threshold τ is an adversarial equilibrium. Suppose there exists another equilibrium

that gives the intermediary a lower revenue. In this equilibrium, let τ̃ = pN + φd, where pN

is the price following non-disclosure. All scores strictly greater than τ̃ disclose and all scores

strictly lower than τ̃ conceal, so the equilibrium price satisfies

E[s < τ̃ ] ≤ pN ≤ E[s|s ≤ τ̃ ].

The intermediary’s revenue from this equilibrium is φt+φd[1−G(τ̃)+λ(G(τ̃)−sups<τ̃ G(s))],

where λ ∈ [0, 1] is the probability that the agent discloses when s = τ̃ . Since this equilibrium

gives the intermediary a lower revenue,

1−G(τ̃) + λ(G(τ̃)− sup
s<τ̃

G(s)) < 1−G(τ),

which implies τ̃ > τ . But then from part (b), the characterization of τ , and the fact that τ̃ > τ ,

we have

τ̃ − φd > E[s|s ≤ τ̃ ] ≥ pN ,

which contradicts τ̃ = pN + φd. �
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A.4 Proof of Lemma 4 on p. 20

We prove Lemma 4 by first proving part (c), then part (a), and finally part (b). To prove part

(c) we use the following lemma.

Lemma 6. If (Gn, τn)→ (G, τ), and limn→∞G
n(τn) exists, then limn→∞G

n(τn) ≤ G(τ).

Proof. It suffices to show that for any c > G(τ), there exists N such that for n ≥ N , Gn(τn) < c.

Because G is right-continuous, it follows that for any c > G(τ), there exists ε̄ > 0 such that

c > G(τ + 2ε̄) + ε̄. (10)

Because τn → τ , there exists N1 such that for n > N1, τn ≤ τ + ε̄ and hence

Gn(τn) ≤ Gn(τ + ε̄). (11)

The topology of weak convergence is metrized by the Levy metric L, which for distribution G

and any distribution H assigns distance

L(G,H) = inf{ε > 0|H(x− ε)− ε ≤ G(x) ≤ H(x+ ε) + ε for all x}.

Thus, if Gn converges weakly to G, there exists N2 such that for all n > N2, L(G,Gn) < ε̄ and

hence

G(τ + 2ε̄) + ε̄ ≥ Gn(τ + ε̄). (12)

Combining (10), (11), and (12), it follows that for every n ≥ max{N1, N2},

c > G(τ + 2ε̄) + ε̄ ≥ Gn(τ + ε̄) ≥ Gn(τn).

�

Proof of Lemma 4(c). Let us begin by verifying (w-P). We have

φt = lim
n→∞

φnt ≤ lim
n→∞

∫ θ

µ+φnd

[s− (µ+ φnd)]dGn(s) =

∫ θ

µ+φd

[s− (µ+ φd)]dG(s),

where the equalities follow from taking limits and the inequality follows from (Gn, φn, τn) sat-

isfying (P). So (G, φ) satisfies (w-P).

We now turn to (w-HE). Since τn − φnd = E[s|s ≤ τn] ≤ µ and φnd → φd, τ
n is uniformly

bounded from above. Also τn ≥ θ so τn is bounded from below. By the Bolzano-Weierstrass

theorem, there exists a subsequence nk and τ such that limk→∞ τ
nk = τ .
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For any τ ′ > τ , we show that φdG(τ ′) ≤
∫ τ ′
θ
G(s)ds, which by integration by parts means

that τ ′ − φd ≥ EG[s|s ≤ τ ′]. Indeed, if φdG(τ ′) >
∫ τ ′
θ
G(s)ds, there exists a small enough ε

such that φdG(τ ′ + ε) >
∫ τ ′+ε
θ

G(s)ds and G is continuous at τ ′ + ε. Continuity implies that

limk→∞ φ
nk
d G

nk(τ ′ + ε) = φdG(τ ′ + ε). In addition, τ ′ > τ implies that for large enough k,

τ ′ + ε > τ ′ > τnk . Because (Gnk , φnk , τnk) satisfies (HE), we have τ ′ − φnkd > EGnk [s|s ≤ τ ′]

which means that φnkd G
nk(τ ′ + ε) <

∫ τ ′+ε
θ

Gnk(s)ds. But then we have a contradiction:

φdG(τ ′ + ε) >

∫ τ ′+ε

θ

G(s)ds = lim
k→∞

∫ τ ′+ε

θ

Gnk(s)ds ≥ lim
k→∞

φnkd G
nk(τ ′ + ε) = φdG(τ ′ + ε).

Next we show that φdG(τ) =
∫ τ
θ
G(s)ds, which by integration by parts means that τ −φd =

EG[s|s ≤ τ ]. Since G is right continuous and for all τ ′ > τ , φdG(τ ′) ≤
∫ τ ′
θ
G(s)ds, we must have

φdG(τ) ≤
∫ τ
θ
G(s)ds. Because (Gnk , φnk , τnk) satisfies (HE), we have τnk − φnkd = EGnk [s|s ≤

τnk ], and from integration by parts, φnkd G
nk(τnk) =

∫ τnk
θ

Gnk(s)ds. So limk→∞ φ
nk
d G

nk(τnk)

exists and equals
∫ τ
θ
G(s)ds. Therefore,

φdG(τ) ≥ lim
k→∞

φnkd G
nk(τnk) =

∫ τ

θ

G(s)ds,

where the inequality holds from Lemma 6. Therefore, φdG(τ) =
∫ τ
θ
G(s)ds. Also since

limk→∞ φ
nk
d G

nk(τnk) is between φdG(τ) and
∫ τ
θ
G(s)ds, we have φdG(τ) = limk→∞ φ

nk
d G

nk(τnk).

Now that we have shown that (G, φ, τ) satisfies (w-P) and (w-HE), we next turn to revenue:

lim
n→∞

φnt + φnd(1−Gn(τn)) = φt + lim
k→∞

φnkd (1−Gnk(τnk)) = φt + φd(1−G(τ)).

So (G, φ, τ) generates revenue that is the limit of the revenues generated by (Gn, (φnd , φ
n
t ))

and τn. �

We use the following lemma to prove Lemma 4(a) and Lemma 4(b).

Lemma 7. For every test-fee structure and threshold (G, φ, τ) that satisfy (w-P) and (w-HE),

there exists a sequence of test-fee structures and thresholds {(Gn, φn, τn)}n=1,2,... such that (i)

for each n, (Gn, φn, τn) satisfy (P) and (HE), (ii) (Gn, φn) converges to (G, φ), and (iii)

R̂(G, φ, τ) ≤ limn→∞ R̂(Gn, φn, τn).

Proof. Consider a test-fee structure and threshold (G, φ, τ) that satisfy (w-P) and (w-HE), so

φt ≤
∫ θ

µ+φd

(s− µ− φd)dG(s)

τ − φd = E[s|s ≤ τ ]
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τ ′ − φd ≥ E[s|s ≤ τ ′] for all τ ′ > τ.

Letting φnd = φd − 1
n

and φnt = φt − 1
n
, we have

φnt < φt ≤
∫ θ

µ+φd

(s− µ− φd)dG(s) ≤
∫ θ

µ+φnd

(s− µ− φnd)dG(s),

so (P) is satisfied.

From Lemma 3, we know that under (G, φn), the highest equilibrium threshold τ̂n exists.

Moreover,

τ − φnd > τ − φd = E[s|s ≤ τ ]

τ ′ − φnd > τ ′ − φd ≥ E[s|s ≤ τ ′] for all τ ′ > τ.

This implies that the highest threshold τ̂n satisfies τ̂n < τ . So the revenue under (G, φn) is

φnt + φnd(1−G(τ̂n)) ≥ φnt + φnd(1−G(τ)) ≥ φt + φd(1−G(τ))− 2

n

where the last term goes to R̂(G, φ, τ) as n→∞. Notice that G(τ̂n) is bounded so there exists

a subsequence nk so that G(τ̂nk) converges. Taking such a subsequence and letting k →∞, we

have

lim
k→∞

R̂(Gnk , φnk , τnk) = lim
k→∞

φnkt + φnkd (1−G(τ̂nk)) ≥ φt + φd(1−G(τ)) = R̂(G, φ, τ).

�

Proof of Lemma 4(a). Consider a sequence (Gn, (φnt , φ
n
d)) and τn satisfying (P) and (HE) and

generating value V n that converges to RM . By Lemma 2 we can assume that the fees (φnt , φ
n
d)

are non-negative. This implies that φnt ≤
∫ θ
µ

(s − µ)dGn(s) ≤ θ − µ. Also φnd ≤ θ − µ, since

otherwise (P) implies that φnt < 0.

Now we have a sequence (Gn, (φnt , φ
n
d)) such that φnt ∈ [0, θ − µ], φnd ∈ [0, θ − µ], and Gn ∈

Γ(F ). Proposition 1 of Kleiner, Moldovanu, and Strack (2020) proves that Γ(F ) is compact,

which implies that there exists a converging subsequence (Gnk , (φnkt , φ
nk
d ))→ (G, (φt, φd)). From

Lemma 4(c), we can find a τ such that (G, (φt, φd), τ) satisfies (w-P) and (w-HE) and generates

revenue RM . Moreover, by Lemma 7, any test-fee structure and threshold satisfying (w-P) and

(w-HE) must generate a revenue of at most RM , so (G, (φt, φd), τ) is an optimal solution to the

relaxed problem. �

Proof of Lemma 4(b). By Lemma 7, there exists a sequence of test-fee structures and thresholds
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{(Gn, φn, τn)}n=1,2,... such that (i) for each n, (Gn, φn, τn) satisfies (P) and (HE), (ii) (Gn, φn)

converges to (G, φ), and (iii) limn→∞ R̂(Gn, φn, τn) ≥ R̂(G, φ, τ) = RM . By definition of RM ,

limn→∞ R̂(Gn, φn, τn) ≤ RM , so limn→∞ R̂(Gn, φn, τn) = RM . �

A.5 Proof of Proposition 2 on p. 21

We prove Proposition 2 in reverse order, beginning with (d) and ending with (a). We then

prove, as discussed in the text following Proposition 2, that slightly lowering the disclosure fee

of a robustly optimal step-exponential-step test-fee structure results in a test-fee structure that

has a unique equilibrium.

A.5.1 Proof of Proposition 2(d)

We consider a relaxed problem in which the mean-preserving contraction constraints are relaxed

to requiring the score distribution to have same expectation as the prior mean:

max
(G,φ,τ)∈∆[θ,θ]×R3

R̂(G, φ, τ) s.t. (w-P), (w-HE), and EG[s] = EF [s]. (RE)

Recall that R̂(G, φ, τ) ≡ φt + φd(1 − G(τ)) is the revenue of a test-fee structure (G, φ) and

a threshold τ . This is a relaxed problem because G ∈ Γ(F ) implies that G ∈ ∆[θ, θ] and

EG[s] = EF [s].

We use two lemmas to solve the relaxed problem. The first lemma shows that in any optimal

test-fee structure, the only possible score above µ+φd is θ. In other words, the score distribution

G is flat from µ+ φd to θ, with possibly a discrete jump at θ.

Lemma 8. If a test-fee structure (G, φ) with a weak-highest equilibrium threshold τ is an

optimal solution to the relaxed problem (RE), then G(s) = G(µ+ φd) for all s ∈ [µ+ φd, θ).

Proof. Using integration by parts, the testing fee of an optimal test-fee structure is

φt =

∫ θ

µ+φd

[s− (µ+ φd)]dG(s) = −
∫ θ

µ+φd

G(s)ds+ (θ − (µ+ φd)).

Thus, the revenue function is

R̂(G, φ, τ) = −φdG(τ)−
∫ θ

µ+φd

G(s)ds+ (θ − µ).

The weak-highest equilibrium threshold τ satisfies φdG(τ) =
∫ τ
θ
G(s)ds. To see this, note that

if G(τ) = 0, then the equality holds trivially. If G(τ) > 0, then from the equality in (w-HE)
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and integration by parts,

φd = τ − EG[s|s ≤ τ ] =
τG(τ)−

∫ τ
θ
sdG(s)

G(τ)
=

∫ τ
θ
G(s)ds

G(τ)
,

which means that φdG(τ) =
∫ τ
θ
G(s)ds. Substituting this equality into the expression for the

revenue, we have

R̂(G, φ, τ) = −
∫ τ

θ

G(s)ds−
∫ θ

µ+φd

G(s)ds+ (θ − µ) =

∫ µ+φd

τ

G(s)ds, (13)

where the second equality followed from the constraint that the integral of G is θ − µ.

Now consider an optimal test-fee structure (G, φ) with a weak-highest equilibrium threshold

τ , and suppose for contradiction that G(s) > G(µ + φd) for some s ∈ [µ + φd, θ). Construct

a distribution G′ as follows. Let G′(s) = αG(s) for some α and all s ≤ µ + φd, and G′(s) =

G′(µ+φd) for all s ∈ [µ+φd, θ). By the assumption thatG(s) > G(µ+φd) for some s ∈ [µ+φd, θ),

there exists an α > 1 such that the areas under G and G′ are equal. Define φ′d = φd, and φ′t so

that the upper bound on the testing fee (w-P) holds with equality for distribution G′.

We now show that τ is a weak-highest equilibrium threshold of the test-fee structure (G′, φ′)

and gives higher revenue than (G, φ). Indeed, for any τ ′ such that τ ≤ τ ′ ≤ µ+ φd, since G′ is

equal to G multiplied by α, we have∫ τ ′
θ
G(s)ds

G(τ ′)
=

∫ τ
θ
G(s)ds

G(τ)
.

Thus, from integration by parts, τ ′ − EG′ [s|s ≤ τ ′] = τ ′ − EG[s|s ≤ τ ′] ≥ φd, with equality at

τ ′ = τ . In addition, for all τ ′ ≥ µ+ φd, since G′ is flat we have∫ τ ′
θ
G′(s)ds

G′(τ ′)
≥
∫ µ+φd
θ

G(s)ds

G(µ+ φd)
≥ φd.

It remains to show that the revenue of (G′, φ′) is higher than that of (G, φ). This fact follows

directly from (13), since G′ > G below µ+ φd.
29 �

The second lemma that we use to solve the relaxed problem (RE) bounds the rate at which

the integral of a score distribution can grow given the (w-HE) constraint.

Lemma 9. Suppose that φd > 0. Let τ be a weak-highest equilibrium threshold. Then for any

29If τ = µ + φd, R̂(G,φ, τ) = 0. As we have shown in the proof of Lemma 2, the optimal revenue is strictly
positive. So in an optimal test-fee structure (G,φ) with threshold τ , τ < µ+ φd.
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τa and τb with τ ≤ τa ≤ τb, ∫ τb

θ

G(s)ds ≤ e
1
φd

(τb−τa)
∫ τa

θ

G(s)ds, (14)

with equality if and only if (w-HE) holds with equality for all thresholds in [τa, τb].

Proof. Using integration by parts, (w-HE) can be written as

φd ≤ τ ′ − E[s|s ≤ τ ′] =

∫ τ ′
θ
G(s)ds

G(τ ′)

for all τ ′ ≥ τ , with equality at τ ′ = τ . The right-hand side is the inverse of the derivative of

ln(
∫ τ ′
θ
G(s)ds) with respect to τ ′. Thus, d

dτ ′
(ln(
∫ τ ′
θ
G(s)ds)) ≤ 1

φd
. Integrating from τa to τb we

obtain,

ln

(∫ τb

θ

G(s)ds

)
− ln

(∫ τa

θ

G(s)ds

)
≤ 1

φd
(τb − τa).

Taking exponents on both sides and re-arranging yields (14), with equality if and only if (w-HE)

holds with equality for all thresholds in [τa, τb]. �

Equipped with Lemma 8 and Lemma 9, we solve the relaxed problem (RE).

Lemma 10. The value of (RE) is (θ − µ)(1 − e
θ−µ
θ−µ ), which is achieved by a unique solution

φ∗t = 0, φ∗d = θ − µ, and

G∗(s) =

e
θ−µ
θ−µ if s ∈ [θ, θ + θ − µ)

e
s−θ
θ−µ if s ∈ [θ + θ − µ, θ].

Proof. We first argue that the test-fee structure (G∗, φ∗) achieves the revenue bound (θ−µ)(1−
e
θ−µ
θ−µ ). We will later show that (θ − µ)(1 − e

θ−µ
θ−µ ) is an upper bound on revenue and therefore

(G∗, φ∗) is optimal. We start by verifying that (G∗, φ∗) is a feasible solution.

First, we show that (w-P) is satisfied. In fact, it holds with equality: since µ + φ∗d = θ,∫ θ
µ+φ∗d

[s− (µ+ φ∗d)]dG
∗(s) = 0 = φ∗t .

Second, we show that the constraint EG∗ [s] = EF [s] is satisfied. From the definition of G∗,

for any τ ′ ≥ θ + θ − µ we have∫ τ ′

θ

G∗(s)ds = (θ − µ)e
θ−µ
θ−µ + (θ − µ)e

s−θ
θ−µ

∣∣∣∣τ ′
θ+θ−µ

= (θ − µ)e
τ ′−θ
θ−µ .
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Thus, in particular,
∫ θ
θ
G∗(s) = θ − µ and hence, by integration by parts,

EG∗ [s] =

∫ θ

θ

sdG∗(s) = θ −
∫ θ

θ

G∗(s)ds = µ = EF [s].

Third, we show that τ = θ + θ − µ satisfies (w-HE). For any τ ′ ≥ θ + θ − µ,

E[s|s ≤ τ ′] =

∫ τ ′
θ
sdG∗(s)

G∗(τ ′)
=
τ ′G(τ ′)−

∫ τ ′
θ
G∗(s)ds

G∗(τ ′)
= τ ′ − (θ − µ)e

τ ′−θ
θ−µ

e
τ ′−θ
θ−µ

= τ ′ − φ∗d.

Therefore, τ = θ + θ − µ satisfies (w-HE) and is a weak-highest equilibrium threshold.

This establishes that (G∗, φ∗) is a feasible solution. The revenue of the test fee structure

(G∗, φ∗) with weak-highest equilibrium threshold τ = θ + θ − µ is

φ∗t + φ∗d(1−G(θ + θ − µ)) = 0 + (θ − µ)(1− e
θ−µ
θ−µ ).

We prove that the above is the value of (RE) by showing that the revenue of any test-fee

structure is at most (θ − µ)(1− e
θ−µ
θ−µ ).

Consider a test-fee structure (G, φ) with a weak-highest equilibrium threshold τ that is an

optimal solution to the relaxed problem (RE). For any τ ′ such that τ ≤ τ ′ ≤ µ+ φd, the total

area under G is

θ − µ =

∫ τ ′

θ

G(s)ds+

∫ θ

τ ′
G(s)ds ≤ φde

1
φd

(τ ′−τ)
G(τ) + (θ − τ ′)G(µ+ φd), (15)

where the inequality follows from Lemma 9 and the fact that G(s) ≤ G(µ+φd) for all s ≤ µ+φd,

andG(s) = G(µ+φd) for all s ∈ [µ+φd, θ) by Lemma 8. Let τ ′ = φd+
µ−θ(1−G(µ+φd))

G(µ+φd)
. Notice that

τ ′ ∈ [τ, µ+φd] because from the definition of τ , τ = φd+E[s|s ≤ τ ] ≤ φd+E[s|s ≤ µ+φd] = τ ′,

and µ < θ implies µ−θ(1−G(µ+φd))
G(µ+φd)

< µ. Now from (15) we have

G(τ) ≥ 1

φd
e
− 1
φd

(τ ′−τ)

(
(θ − µ)− (θ − τ ′)G(µ+ φd)

)
=

1

φd
e
− 1
φd

(τ ′−τ)

(
(θ − µ)−

(
θ − µ

G(µ+ φd)
− φd

)
G(µ+ φd)

)
= e

− 1
φd

(τ ′−τ)
G(µ+ φd)

≥ e
− 1
φd

(θ−θ− θ−µ
G(µ+φd)

)
G(µ+ φd),

where the last inequality follows from θ + φd ≤ τ .

We use the inequality above and Lemma 8 to bound revenue. Since by Lemma 8, the
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distribution is flat above µ+ φd, the testing fee is

φt =

∫ θ

µ+φd

[s− (µ+ φd)]dG(s) = (1−G(µ+ φd))(θ − (µ+ φd)).

The revenue is therefore

R̂(G, φ, τ) ≤ φd

[
1− e−

1
φd

(θ−θ− θ−µ
G(µ+φd)

)
G(µ+ φd)

]
+ (1−G(µ+ φd))(θ − (µ+ φd)).

The above expression is increasing in φd. Since φd ≤ θ − µ, an upper bound on the revenue is

obtained by substituting φd = θ − µ into the above expression, which yields

(θ − µ)(1− e−
θ−θ
θ−µ

+ 1
G(µ+φd)G(µ+ φd)).

This expression is increasing in G(µ + φd). Since G(µ + φd) ≤ 1, an upper bound on the

revenue is obtained by substituting G(µ + φd) = 1 into the above expression, which yields

(θ − µ)(1− e
θ−µ
θ−µ ) and completes the proof. �

Proof of Proposition 2(d). The solution to the relaxed problem in Lemma 10 is (θ−µ)(1−e
θ−µ
θ−µ ).

Therefore, (θ−µ)(1−e
θ−µ
θ−µ ) is an upper bound on the revenue of any test-fee structure. Moreover,

if the support of the prior is binary (i.e. {θ, θ}), G ∈ Γ(F ) is equivalent to G ∈ ∆[θ, θ] and

EG[s] = EF [s], so the bound is attained. �

A.5.2 Proof of Proposition 2(c)

Proof. In a robustly optimal test-fee structure, the constraint (w-P) must bind, otherwise the

intermediary can strictly increase the revenue by increasing φt, so φt =
∫ θ̄
µ+φd

[s− (µ+ φd)]dG.

Now,
∫ θ̄
µ+φd

[s− (µ+φd)]dG > 0 if and only if G(µ+φd) < 1, which then implies the result. �

A.5.3 Proof of Proposition 2(b)

Proof. Suppose towards a contradiction that there exists a robustly optimal test-fee structure

(G, φ) with φd = 0. By (w-P), the revenue guarantee is

φt ≤
∫ θ

µ

(s− µ)dG(s) = (θ − µ)−
∫ θ

µ

G(s)ds,

which is maximized when the inequality holds as an equality and
∫ θ
µ
G(s)ds is minimized.

Since
∫ θ
µ
G(s)ds ≥

∫ θ
µ
F (s)ds for any G that is a mean-preserving contraction of F , we have∫ θ

µ
G(s)ds =

∫ θ
µ
F (s)ds. Now consider a test G′ with support {sL, sH} that is obtained from
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F by pooling all scores strictly below µ into sL and similarly pooling all scores weakly above

µ into sH . We have sL < sH since F is non-degenerate. Since
∫ θ
µ
G′(s)ds =

∫ θ
µ
F (s)ds, the

test-fee structure (G′, φ) satisfies (w-P) and so it is also robustly optimal.

The revenue guarantee of (G′, φ) is the testing fee

∫ θ

µ

(s− µ)dG′(s) =
(sH − µ)(µ− sL)

sH − sL
. (16)

However, by Lemma 10, there exists a test-fee structure (G′′, φ′) with revenue guarantee (sH −
µ)(1 − e

sL−µ
sH−µ ) such that G′′ ∈ ∆[sL, sH ] and EG′′ [s] = EG′ [s]. Since the support of G′ is

binary, EG′′ [s] = EG′ [s] implies that G′′ is a mean-preserving contraction of G′ and therefore

of F . Because µ ∈ (sL, sH), the revenue guarantee of (G′′, φ′) is strictly higher than (16),

contradicting the optimality of (G′, φ). �

A.5.4 Proof of Proposition 2(a)

The following lemma is the main step in the proof of Proposition 2(a). It shows that for any

test-fee structure, there exists a test-fee structure that is in the step-exponential-step class

and has a weakly higher revenue guarantee. The lemma further establishes that any robustly

optimal test must be exponential over an interval.

Lemma 11. For any test-fee structure (G, φ) with φd > 0 and a weak-highest threshold τ1,

there exists a mean-preserving contraction G′ of G, a fee structure φ′ with 0 ≤ φ′t ≤ φt, and a

threshold τ ′1 such that the test-fee structure (G′, φ′) is in the step-exponential-step class, τ ′1 is a

weak-highest threshold, and the revenue of (G′, φ′, τ ′1) weakly exceeds the revenue of (G, φ, τ1).

Further, if (G, φ) is robustly optimal and has weak-highest equilibrium threshold τ1, then φd > 0

and there exists a threshold τ2 ∈ [τ1, µ+ φd] such that G is exponential from τ1 to τ2 and is flat

from τ2 to µ+ φd, i.e.,

G(s) = G(τ1)e
1
φd

(s−τ1)
for all s ∈ [τ1, τ2],

G(s) = G(µ+ φd) for all s ∈ [τ2, µ+ φd].

Proof. Consider a test-fee structure (G, φ) with a weak-highest threshold τ1. By definition of τ1

we have τ1 = EG[s|s ≤ τ1] + φd ≤ µ+ φd. Suppose that τ1 = µ+ φd. Then EG[s|s ≤ τ1] = µ so

G(τ1) = 1. The intermediary’s revenue from the disclosure fee is φd(1−G(τ1)) = 0. Moreover,

from (w-P), the revenue from the testing fee is at most
∫ θ
µ+φd

[s − (µ + φd)]dG = 0 since

G(µ + φd) = 1. So the intermediary receives zero revenue, which is never optimal. We thus

assume that τ1 < µ+ φd.

We first consider the case G(µ + φd) = G(τ1). Let τa = EG[s|s ≤ τ1] and τb = EG[s|s >
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µ + φd]. From the definition of τ1, we have τa = EG[s|s ≤ τ1] = τ1 − φd. The mean constraint

requires that G(τ1)τa + (1−G(τ1))τb = µ, which implies that G(τ1) = τb−µ
τb−τa

.

Given the test G, and to satisfy (w-P), the highest testing fee the intermediary can charge is

φt =
∫ 1

µ+φd
[s− (µ+φd)]dG(s). The revenue from the disclosure fee under equilibrium threshold

τ1 is φd(1−G(τ1)). So the intermediary’s robust revenue under test G is at most

∫ θ

µ+φd

[s− (µ+ φd)]dG(s) + φd(1−G(τ1)) = θ − µ− φd −
∫ θ

µ+φd

G(s)ds+ φd − φdG(τ1)

=

∫ µ+φd

θ

G(s)ds−
∫ τ1

θ

G(s)ds

=

∫ µ+φd

τ1

G(s)ds

= G(τ1)(µ+ φd − τ1)

=
(τb − µ)(µ− τa)

τb − τa
.

We now construct the following distribution G′ in the step-exponential-step class with a null

last step:

G′(s) =



0 if s ∈ [θ, τa)

e
τa−µ
τb−µ if s ∈ [τa, τa + τb − µ)

e
s−τb
τb−µ if s ∈ [τa + τb − µ, τb]

1 if s ∈ [τb, θ].

Observe that G′ is a mean-preserving contraction of G, and τ ′1 = τa+τb−µ is a weak-highest

equilibrium threshold for the test-fee structure (G′, φ′) with φ′d = τb − µ and φ′t = 0 ≤ φt. In

this equilibrium, the intermediary’s revenue is (τb − µ)(1− e
τa−µ
τb−µ ) > (τb−µ)(µ−τa)

τb−τa
.

Now consider the case G(µ + φd) > G(τ1). We construct a class of distributions Gα

parametrized by α ∈ [0, 1]:

Gα(s) =


αG(s) if s ≤ τ1

min{αG(τ1)e
1
φd

(s−τ1)
, G(µ+ φd)} if τ1 < s < µ+ φd

G(s) if s ≥ µ+ φd.

(17)

Notice that Gα is well-defined since φd > 0, and is increasing and between 0 and 1. Therefore,

Gα is a distribution.

We first show that there exists an α ≤ 1 such that the integrals of Gα and G are equal.

We do this with a continuity argument. Let τ2(α) be the lowest score τ ′ > τ1 such that
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Gα(τ ′) = Gα(µ+ φd). Consider α = 1. We have∫ τ2(α)

θ

G1(s)ds = e
1
φd

(τ2(α)−τ1)
∫ τ1

θ

G1(s)ds = e
1
φd

(τ2(α)−τ1)
∫ τ1

θ

G(s)ds ≥
∫ τ2(α)

θ

G(s)ds, (18)

where the inequality follows from Lemma 9. As a result, since G1 is weakly higher than G for

all scores above τ2(α), we have
∫ θ
θ
G1(s)ds ≥

∫ θ
θ
G(s)ds. Further,

∫ µ+φd

θ

G0(s)ds = 0 ≤
∫ µ+φd

θ

G(s)ds.

As a result, since G0 and G are equal above µ + φd, we have
∫ θ
θ
G0(s)ds ≤

∫ θ
θ
G(s)ds. The

integral of Gα increases continuously in α. Therefore, there exists some α ≤ 1 such that the

integrals of Gα and G are equal. For the rest of the proof fix such an α.

We now show that Gα is a mean-preserving contraction of G. Since α ≤ 1, the integral

of Gα up to any threshold τ ′ ≤ τ1 is weakly lower than that of G. For τ ′ ≥ τ2(α), since the

overall integrals of G and Gα are equal and Gα is weakly higher than G above µ+ φd, we have∫ τ ′
θ
Gα(s)ds ≤

∫ τ ′
θ
G(s)ds. Finally, for any τ ′ such that τ1 ≤ τ ′ ≤ τ2(α) we have

∫ τ ′

θ

Gα(s)ds = e
− 1
φd

(τ2(α))−τ ′)
∫ τ2(α)

θ

Gα(s)ds ≤ e
− 1
φd

(τ2(α)−τ ′)
∫ τ2(α)

θ

G(s)ds ≤
∫ τ ′

θ

G(s)ds,

where the second inequality follows from Lemma 9. Thus, Gα is a mean-preserving contraction

of G.

Test-fee structure (Gα, φ) has a weakly higher revenue guarantee than (G, φ). Since the two

distributions are equal above µ+φd, the (w-P) constraint is satisfied for (Gα, φ). Furthermore,

τ1 is a weak-highest equilibrium threshold for (Gα, φ). Since α ≤ 1, we have Gα(τ1) ≥ G(τ1)

which implies that R̂(Gα, φ, τ1) ≥ R̂(G, φ, τ1). In fact, if α < 1, then R̂(Gα, φ, τ1) > R̂(G, φ, τ1).

To see the first statement of the lemma, consider a score distribution G′ that is equal to Gα

except that it pools the scores below τ1 and also pools the scores above τ2. Formally,

G′(s) =


Gα(τ1) if s ∈ [τ0, τ1],

Gα(s) if s ∈ [τ1, τ2],

1 if s ∈ [τ3, θ],

where τ0 and τ3 are such that the integrals of G′ and Gα are equal. Notice that the test-fee

structure (G′, φ) is in the step-exponential-step class, with a non-degenerate exponential part

because τ2 > τ1. Distribution G′ is a mean-preserving contraction of Gα and therefore of

G. Finally, the robust revenue of the test-fee structure (G′, φ) with weak-highest equilibrium
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threshold τ1 is equal to that of (Gα, φ), and therefore is at least that of (G, φ). This establishes

the first statement of the lemma.

To see the second statement, suppose that (G, φ) is optimal. Then φd > 0 by Proposi-

tion 2(b). Recall that if α < 1, the robust revenue of (Gα, φ) is strictly higher than that of

(G, φ). Therefore, α = 1. Now let τ2 = τ2(1). By definition, G is flat from τ2 to µ+φd. Further,

(18) holds with equality for α = 1, that is, e
1
φd

(τ2−τ1) ∫ τ1
θ
G(s)ds =

∫ τ2
θ
G(s)ds. Then Lemma 9

implies that (w-HE) holds with equality for all thresholds in [τ1, τ2]. Thus, for any τ ′ ∈ [τ1, τ2],(
d

dτ ′
(ln(

∫ τ ′

θ

G(s)ds))

)−1

=

∫ τ ′
θ
G(s)ds

G(τ ′)
= τ ′ − E[s|s ≤ τ ′] = φd.

The solution to this differential equation is G(s) = G(τ1)e
1
φd

(s−τ1)
for all s ∈ [τ1, τ2]. �

Proof of Proposition 2(a). Consider any robustly optimal test-fee structure (G, φ). By Propo-

sition 2(b), φd > 0. By Lemma 11, the robust revenue of (G, φ) is at most the robust revenue of

some step-exponential-step test-fee structure (G′, φ) where G′ is a mean-preserving contraction

of G. This (G′, φ) is therefore robustly optimal. �

A.5.5 Uniqueness of Equilibrium with Slightly Lower Disclosure Fee

As mentioned in the discussion that followed Proposition 2, we show in addition that there is

a unique equilibrium under any robustly optimal step-exponential-step test-fee structure with

a slightly lower disclosure fee. Let (G, φ) be a robustly optimal step-exponential-step test-fee

structure:

G(s) =


κ if s ∈ [τ0, τ1)

κe(s−τ1)/(τ1−τ0) if s ∈ [τ1, τ2)

1 if s ≥ τ3,

,

the disclosure fee is φd = τ1− τ0, and the testing fee is φt = (1−κe(τ2−τ1)/(τ1−τ0))(τ3− (µ+φd)).

Notice that for any τ ∈ [τ1, τ2],

EG[s|s ≤ τ ] = τ −
∫ τ
θ
G(s)ds

G(τ)
= τ − κ(τ1 − τ0)e

τ−τ1
τ1−τ0

κe
τ−τ1
τ1−τ0

= τ − τ1 − τ0 = τ − φd.

For τ > τ2, EG[s|s ≤ τ ] ≤ τ − φd. For τ ∈ [τ0, τ1), EG[s|s ≤ τ ] = τ0 < τ − φd.
Consider a test-fee structure (G, φ′) with φ′t = φt and φ′d = φd−ε for ε < τ1−τ0. Then there

exists a unique threshold τ ′ = τ1 − ε satisfying (HE). Moreover, since (G, φ) satisfies (w-P),

(G, φ′) satisfies (P) because
∫ θ̄
µ+φd

[s − (µ + φd)]dG <
∫ θ̄
µ+φd−ε

[s − (µ + φd − ε)]dG. Therefore,
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in the unique equilibrium under (G, φ′), the asset is tested with probability 1 and the agent

discloses all the scores above τ1.

A.6 Proof of Proposition 3 on p. 24

Proof. With binary support, the mean-preserving contraction constraints become EG[s] =

EF [θ]. Therefore, the proposition follows from Lemma 10. �
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B Online Appendix

B.1 Proof of Proposition 1 on p. 15

Proof. Consider a test-fee structure (G, φ). If (w-P) is violated, then Lemma 1 shows that

there is an equilibrium with zero revenue and the proposition follows. Suppose that (w-P)

holds. Using integration by parts, we can rewrite (w-P) as φt ≤
∫ θ
µ+φd

[1 − G(s)]ds. This

expression implies that any testing fee that satisfies (w-P) is at most the area above the score

distribution G from µ + φd to θ, shaded dark in Figure 8. The revenue from disclosure is at

most φd Pr[s ≥ θ + φd], shaded light in Figure 8. This is because in any equilibrium, a score

strictly less than θ + φd strictly prefers to conceal. So the total revenue is at most the shaded

area above G. Since G is a mean-preserving contraction of the prior distribution,

µ =

∫ θ

θ

sdG(s) =

∫ θ

θ

[1−G(s)]ds+ θ

and therefore the area above G is equal to RF = µ− θ.

CDF

Scoreθ

G

µ+ φd θ

1

θ + φd

Figure 8: The revenue from the testing fee is shaded dark. The revenue from the disclosure fee is at most the
area shaded light.

Now suppose that there exists an equilibrium with a revenue of RF − ε. Since the revenue

is at most the shaded area above G and the total area above G is RF , the unshaded area above

G is at most ε. In particular, the area above G from θ + φd to µ+ φd is at most ε. Since G is

monotone,

φt ≤
∫ θ

µ+φd

[1−G(s)]ds ≤
(
θ − (µ+ φd)

µ− θ

)∫ µ+φd

θ+φd

[1−G(s)]ds ≤
(
θ − µ
µ− θ

)
ε.

Therefore, as ε goes to zero, the revenue from the testing fee goes to zero as well. Thus, to

complete the proof we only need to show that the revenue from the disclosure fee also goes to

zero.

50



For ε small enough so that µ+ φd ≥ θ + φd +
√
ε, we have

ε ≥
∫ µ+φd

θ+φd

[1−G(s)]ds ≥
∫ θ+φd+

√
ε

θ+φd

[1−G(s)]ds ≥
√
ε(1−G(θ + φd +

√
ε)),

where the third inequality follows since G is monotone. That is, the probability that the score

is more than τ ≡ θ + φd +
√
ε is at most

√
ε. Thus, if there exists an equilibrium threshold

above τ , the disclosure probability in that equilibrium is at most
√
ε. To show that there exists

an equilibrium threshold above τ , we apply Lemma 3 by showing that E[s|s ≤ τ ] > τ − φd.
The expectation of G can be written as

µ = G(τ)E[s|s ≤ τ ] + (1−G(τ))E[s|s > τ ] ≤ G(τ)E[s|s ≤ τ ] + (1−G(τ))θ.

Rearranging terms yields

θ − E[s|s ≤ τ ] ≤ θ − µ
G(τ)

≤ θ − µ
1−
√
ε
.

Therefore, since τ = θ + φd +
√
ε and θ < µ, for ε < (µ−θ

1+θ
)2 we have

τ − φd = θ +
√
ε <

µ− θ
√
ε

1−
√
ε

= θ − θ − µ
1−
√
ε
≤ E[s|s ≤ τ ],

and therefore by Lemma 3 there is an equilibrium threshold higher than τ .

To complete the proof, recall that φd < θ − µ, so the revenue from the disclosure fee is no

more than
√
ε(θ − µ). Thus the total revenue is at most ( θ−µ

µ−θ )ε+
√
ε(θ − µ). �

B.2 Proof of Proposition 4 on p. 25

We first simplify the step-exponential-step distribution identified in Section 5 when the testing

fee is zero.

Lemma 12. Suppose that the prior distribution is log-concave and consider an optimal step-

exponential-step test-fee structure (G, φ) defined by (5), (6), and (7). If φt = 0, then τ2 =

µ+φd < θ and G(τ2) = 1. Additionally, there exist δ, σ > 0 such that δ+
∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds

for any τ ∈ [τ1 − σ, τ2].

Proof. For the optimal testing fee to be zero, the area above G from µ+ φd to θ must be zero,

and hence G(µ+ φd) = 1. From Lemma 11, G(τ2) = 1.

The mean-preserving constraints which require that G is θ − µ can be written as

θ − µ =

∫ τ1

θ

G(s)ds+

∫ τ2

τ1

κe
s−τ1
τ1−τ0 ds+ (θ − τ2)
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= κ(τ1 − τ0) + (τ1 − τ0)κe
s−τ1
τ1−τ0 |τ2τ1 + (θ − τ2)

= (τ1 − τ0) + θ − τ2,

where the third inequality follows because κ = e
τ1−τ2
τ1−τ0 is pinned down by the mean-preserving

contraction conditions. We must therefore have τ2 = µ+ (τ1 − τ0) = µ+ φd.

We now show that the mean-preserving contraction constraints must be slack on interval

[τ1, τ2]. Notice that log-concavity implies continuity in the interior, which is used in the later

arguments.

We first claim that F (τ1) ≥ G(τ1) = e
− µ−τ0
τ1−τ0 . Suppose that F (τ1) < G(τ1). Then F (x) <

G(x) for any x ∈ [τ0, τ1), which implies the constraint must be slack on the interval [τ0, τ1)

because
∫ x
θ
F (s)ds =

∫ τ1
θ
F (s)ds −

∫ τ1
x
F (s)ds >

∫ τ1
θ
G(s)ds −

∫ τ1
x
G(s)ds =

∫ x
θ
G(s)ds. Since

the integrals are continuous, the constraint is also slack at τ1. So we can construct a new

distribution parameterized by τ ′1 = τ1 − ε and τ ′0 = τ0 − ε, the distribution on [τ1, θ] does not

change so all the constraints on [τ1, θ] are still satisfied. Also since the original constraints

on [θ, τ1] are slack, they are still satisfied for small ε. By charging the same disclosure fee

φd = τ1− τ0, this new distribution induces a higher disclosure probability, which contradicts G

being optimal.

If F (τ1) = G(τ1), the same argument goes through if the constructed distribution does not

violate the mean-preserving constraints. If the constraint is slack at τ1, then all the constraints

at points lower than τ1 are slack, so the constructed distribution is still a profitable deviation.

If the constraint binds at τ1, the right derivative of F at τ1 must be greater than the right

derivative of G. Also, the left derivative of F must be greater than that of G by log-concavity.

So the local change of the distribution doesn’t violate any constraints, which leads to a profitable

deviation.

We must therefore have F (τ1) > G(τ1) and the constraint is slack at τ1 due to the continuity

of F . Since the mean-preserving constraint is also slack at τ2 and the integrals of G and F are

continuous, there exists δ, σ > 0 such that δ +
∫ τ ′
θ
G(s)ds ≤

∫ τ ′
θ
F (s)ds for any τ ∈ [τ1 − σ, τ1],

and further, δ +
∫ τ2
θ
G(s)ds ≤

∫ τ2
θ
F (s)ds. Moreover, from the log-concavity of F and the facts

that F (τ1) > G(τ1) and F (τ2) < G(τ2), F crosses the exponential part of G from above exactly

once. To see this, notice that log(F ) is concave and log(G) is linear on [τ1, τ2], and a concave

function can only cross a linear function from above once. Letting x∗ denote the intersection

point, we have F (x) > G(x) for x ∈ [τ1, x
∗) and F (x) < G(x) for x ∈ (x∗, τ2]. Now for any

τ ′ ∈ [x∗, τ2] we have

δ +

∫ τ ′

θ

G(s)ds = δ +

∫ τ2

θ

G(s)ds−
∫ τ2

τ ′
G(s)ds ≤

∫ τ2

θ

F (s)ds−
∫ τ2

τ ′
F (s)ds =

∫ τ ′

θ

F (s)ds.
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Similarly, for any τ ′ ∈ [τ1, x
∗] we have

δ +

∫ τ ′

θ

G(s)ds = δ +

∫ τ1

θ

G(s)ds+

∫ τ ′

τ1

G(s)ds ≤
∫ τ1

θ

F (s)ds−
∫ τ ′

τ1

F (s)ds =

∫ τ ′

θ

F (s)ds.

To complete the proof, we show that τ2 < θ. If τ2 = θ, then since G is log-linear on

[τ1, τ2] and F log-concave on that interval and the mean-preserving contraction constraints are

satisfied, it must be that G ≥ F over the interval [τ1, τ2], and in particular, G(τ1) ≥ F (τ1). But

as we argued above, G(τ1) < F (τ1), which is a contradiction. �

Given Lemma 12 we now prove Proposition 4.

Proof of Proposition 4. By Lemma 11, if there exists a robustly optimal test-fee structure with

zero testing fee, then there exists a robustly optimal test-fee structure (G, φ) in the step-

exponential-step class with zero testing fee. Suppose thatG is parameterized by κ and τ0, . . . , τ3.

This test G must satisfy the properties of Lemma 12. Given (G, φ), we construct a class of

test-fee structures (Gε, φε) for ε ≥ 0 as follows

Gε(s) =


κ if s = τ0

κe(s−τ1(ε))/(τ1(ε)−τ0) if s ∈ [τ1(ε), τ2(ε)]

F (s) if s ∈ [τ3(ε), θ],

where τ1(ε) = τ1−ε, τ2(ε) is specified below, and τ3(ε) is defined so that Gε is flat from τ2(ε) to

τ3(ε), that is, τ3(ε) = F−1(min(κe(τ2(ε)−τ1(ε))/(τ1(ε)−τ0), 1)). Let φd(ε) = φd − ε and define φt(ε)

such that (w-P) holds with equality.

We define τ2(ε) so that the integrals of Gε and F are the same. To show that such τ2(ε)

exists, we show that there is a unique solution x to

θ − µ = κ(τ1 − ε− τ0) +

∫ x

τ1−ε
κe

s−τ1+ε
τ1−ε−τ0 ds+ κe

x−τ1+ε
τ1−ε−τ0 (τ3(x)− x) +

∫ θ

τ3(x)

F (s)ds

= κe
x−τ1+ε
τ1−ε−τ0 (τ1 − ε− τ0 + τ3(x)− x) +

∫ θ

τ3(x)

F (s)ds,

where τ3(x) = F−1(min(κe(x−τ1+ε)/(τ1−ε−τ0), 1)). The derivative of the right hand side with

respect to x is

κe
x−τ1−ε
τ1−ε−τ0

(
τ1 − ε− τ0 + τ3 − x

τ1 − ε− τ0

+ τ ′3(x)− 1

)
− τ ′3(x)F (τ3(x)).

The derivative τ ′3(x) exists because F is assumed to have a positive density. Now evaluate this
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derivative at ε = 0, x = τ2, where τ3(x) = θ and 1 = F (τ3(x)) = κe
τ2−τ1
τ1−τ0 . So the terms with

τ ′3(x) cancel out and the derivative is

θ − τ2

τ1 − τ0

> 0.

Therefore, by the implicit function theorem, τ2(ε) is well-defined and |τ ′2(ε)| < ∞ for small

enough ε. It must be that Gε(τ2(ε)) ≤ 1, implying that Gε is a well-defined distribution.

Otherwise Gε is above G which means that the integral of Gε is larger than the integral of F .

Notice that τ2(0) = τ2, which implies that (G0, φ(0)) = (G, φ).

We next show that for small enough ε > 0, Gε is a mean-preserving contraction of F . That

is,
∫ τ
θ
Gε(s)ds ≤

∫ τ
θ
F (s)ds for any τ ∈ [θ, θ]. This inequality follows for all τ ≤ τ1(ε) because

G and Gε are identical below τ1(ε), and G is a mean-preserving contraction of F . Similarly,

the inequality holds for all τ ≥ τ2(ε) because Gε is weakly higher than F above τ2(ε). For

[τ1(ε), τ2(ε)], recall from Lemma 12 that there exist δ, σ > 0 such that δ+
∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds

for any τ ∈ [τ1 − σ, τ2]. Now choose ε small enough so that
∫ τ
θ
Gε(s)ds ≤ δ +

∫ τ
θ
G(s)ds for

any τ ∈ [τ1 − σ, τ2] and further that τ1 − σ ≤ τ1(ε). The two inequalities then imply that∫ τ
θ
Gε(s)ds ≤ δ +

∫ τ
θ
G(s)ds ≤

∫ τ
θ
F (s)ds for any τ ∈ [τ1(ε), τ2(ε)].

To complete the proof, we show that for small enough ε > 0, the revenue guarantee of

(Gε, φ(ε)) is strictly higher than that of (G, φ). First notice that τ1(ε) is a weak-highest equi-

librium threshold for the test-fee structure (Gε, φ(ε)). This is because Gε is exponential from

τ1(ε) to τ2(ε) and flat from τ2(ε) to µ+ φd(ε). The intermediary’s revenue is

R(ε) ≡ φt(ε) + φd(ε)
(
1−Gε(τ1(ε))

)
=

∫ θ

µ+φd(ε)

[s− µ− φd(ε)]dGε(s) + φd(ε)
(
1−Gε(τ1(ε))

)
= θ − µ− φd(ε)−

∫ θ

µ+φd(ε)

Gε(s)ds+ φd(ε)−
∫ τ1(ε)

θ

Gε(s)ds

=

∫ µ+φd(ε)

τ1(ε)

Gε(s)ds

= κe
τ2(ε)−τ1(ε)
τ1(ε)−τ0

(
2(τ1(ε)− τ0) + µ− τ2(ε)

)
− (τ1(ε)− τ0)κ.

To show that there exists ε > 0 with R(ε) > R(0), we consider the derivative of revenue with

respect to ε, R′(ε). This derivative exists because τ ′1(ε) = −1, and τ ′2(ε) exists and |τ ′2(ε)| < −∞
as argued above. Now let λ(ε) = τ2(ε)−τ1(ε)

τ1(ε)−τ0 and write

R′(ε) = κeλ(ε)

(
λ′(ε)

(
2(τ1(ε)− τ0) + µ− τ2(ε)

)
− 2− τ ′2(ε)

)
+ κ.
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We now evaluate this derivative at ε = 0. The fact that G is a mean-preserving spread of F

implies that κ = e
− µ−τ0
τ1−τ0 and therefore κeλ(0) = 1. Also 2(τ1 − τ0) + µ− τ2 = φd. So we have

R′(0) = λ′(0)φd − 2− τ ′2(0) + κ

= τ ′2(0) + 1− τ2 − τ1

τ1 − τ0

− 2− τ ′2(0) + κ

= κ− τ2 − τ1

τ1 − τ0

− 1

= e
τ0−µ
τ1−τ0 +

τ0 − µ
τ1 − τ0

− 1

> 0.

The inequality follows because ex > 1 + x for x 6= 0. Thus R(ε) > 0 for small enough ε. This

contradicts the optimality of (G, φ). �

B.3 Proof of Proposition 5 on p. 25

Proof. Consider a test-fee structure with a zero disclosure fee. By (w-P), the revenue is

φt ≤
∫ θ

µ

(s− µ)dG(s) = (θ − µ)−
∫ θ

µ

G(s)ds.

This revenue is maximized when the inequality holds as an equality and
∫ θ
µ
G(s)ds is minimized.

Since
∫ θ
µ
G(s)ds ≥

∫ θ
µ
F (s)ds for any G that is a mean-preserving contraction of F ,

∫ θ
µ
G(s)ds

is minimized when
∫ θ
µ
G(s)ds =

∫ θ
µ
F (s)ds. So the robustly optimal revenue is

∫ θ
µ

(s− µ)dF (s),

which can be achieved by a binary test G with sH = E[θ|θ ≥ µ], sL = E[θ|θ < µ] and

G(sL) = Pr[θ < µ]. To see this, first note that G ∈ Γ(F ) because G is induced by a test that

maps θ < µ to sL and θ ≥ µ to sH . Second, the revenue is
∫ θ
µ

(s− µ)dG(s) = (1−G(sL))(sH −

µ) = Pr(θ ≥ µ) (E[θ|θ ≥ µ]− µ) =
∫ θ
µ

(s− µ)dF (s). �

B.4 Proof of Proposition 6 on p. 26

Proof. Suppose G ∈ Γ(F ) is restricted to have binary support s1, s2 ∈ [θ, θ]. Without loss of

generality, let s1 < s2. Notice that for any s1, s2, the mean-preserving contraction constraints

pins down G(s1) = s2−µ
s2−s1 . From arguments similar to those used in proving Lemma 2, we focus

on φt, φd ≥ 0. To satisfy (w-P), φd ≤ s2 − µ. For any φd ∈ [0, s2 − µ], (w-HE) implies that

the lowest weak-highest equilibrium threshold is τ = s1 + φd ∈ [s1, s1 + s2 − µ) ⊂ [s1, s2), so

G(τ) = G(s1).
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Thus, the intermediary’s problem can be written as

max
φt,φd,s1,s2

φt + φd (1−G(s1)) (19)

s.t. φt ≤
∫ θ̄

µ+φd

[s− (µ+ φd)]dG(s)

φd ∈ [0, s2 − µ]

θ ≤ s1 < µ < s2 ≤ θ

G ∈ Γ(F ).

Clearly the constraint for φt must bind, so φt =
∫ θ̄
µ+φd

[s−(µ+φd)]dG(s) = (s2−µ−φd)(1−G(s1)).

Plugging in φt, we have φt + φd(1−G(s1)) = (s2 − µ)(1−G(s1)).

The problem can be further simplified to

max
φd,s1,s2

(s2 − µ)(1−G(s1))

s.t. φd ∈ [0, s2 − µ]

θ ≤ s1 < µ < s2 ≤ θ

G ∈ Γ(F ).

Since φd does not enter the objective function, for any optimal test, any φd ∈ [0, s2 − µ]

and φt = (s2 − µ − φd)(1 − G(s1)) form an optimal fee structure. In particular, φd = 0

and φt = (s2 − µ)(1 − G(s1)) are optimal. Recall that from Proposition 5, a binary test

s1 = E[θ|θ < µ], s2 = E[θ|θ ≥ µ] is optimal when the intermediary is restricted to using only a

testing fee. So s1 = sL = E[θ|θ < µ], s2 = sH = E[θ|θ ≥ µ] is also an optimal test for problem

(19). �

B.5 Proof of Proposition 8 on p. 28

Proof. Consider an evidence-test-fee structure denoted by fees (φt, φd), an unbiased test T :

Θ→ ∆S, and an evidence structure M : S ⇒M such that for each s, M(s) is a Borel space.

A strategy profile (σ, p) consists of the agent’s strategy σ = (σT , σD), where σT ∈ [0, 1] and

σD maps s ∈ S to ∆(M(s) ∪ {N}), and the market price p : M → [θ, θ̄]. Let (σ, p) be an

adversarial equilibrium. We first consider the case in which the agent has the asset tested with

probability 1, that is σT = 1.

Consider the disclosure stage. LetG(σ,p) be the induced distribution of prices, i.e., G(σ,p)(x) =

Pr[p(σD(s)) ≤ x] for any x, taking into account both the randomization over the score and
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the agent’s strategy. Let τ ≡ p(N) + φd. We show that the following holds, mirroring our

characterization of the highest equilibrium threshold (HE):

τ − φd ≤ EG(σ,p)
[x|x ≤ τ ], (20)

τ ′ − φd > EG(σ,p)
[x|x ≤ τ ′],∀τ ′ > τ. (21)

Let us argue why (20) holds. Since τ − φd = p(N), it suffices to show that p(N) is weakly less

than EG(σ,p)
[x|x ≤ τ ]. Observe that with probability 1, p(σD(s)) is at least p(N): if p(σD(s))

were strictly less than p(N), the agent could profitably deviate to sending message N and

obtaining a strictly higher price. But this implies that p(N) ≤ E[p(σD(s))|p(σD(s)) ≤ τ ] =

EG(σ,p)
[x|x ≤ τ ].

To see why (21) holds, suppose for contradiction that τ ′′ − φd ≤ EG(σ,p)
[p|p ≤ τ ′′] for some

τ ′′ > τ . By Lemma 5, there exists τ ′ > τ such that τ ′ − φd = EG(σ,p)
[p|p ≤ τ ′]. Consider the

strategy profile (σ′, p′) defined as follows. The agent’s strategy σ′ is the same as σ except that

the agent conceals a score s if p(σ(s)) ≤ τ ′. For m 6= N , p′(m) = p(m), and for m = N , the

price is p′(m) = EG(σ,p)
[x|x ≤ τ ′] ≥ EG(σ,p)

[x|x ≤ τ ] ≥ p(m). Notice that since any message m

that is disclosed in (σ′, p′) is also disclosed in (σ, p), the prices p′ are defined on path via Bayes

rule.

To see that (σ′, p′) is an equilibrium, consider any score s such that p(σ(s)) > τ with positive

probability. Therefore, following a score of s, the agent optimally randomizes over messages

other than N that lead to the same (and maximal) price which, abusing notation, we denote

by p(σ(s)). Since p(m) = p′(m) for all m 6= N , σ(s) is optimal among all strategies that send

N with probability 0 given prices p′. Therefore, for such a score it is optimal to follow σ(s) if

p′(σ(s)) > τ ′ = p′(N) + φd, and to conceal if p′(σ(s)) ≤ τ ′, as prescribed by σ′. Now consider

a score s such that p(σ(s)) ≤ τ with probability 1. For such a score, it is optimal given prices

p to conceal, i.e., for any message m 6= N that the agent can send following a score of s,

p(m) − φd ≤ p(N). Since p′(m) = p(m) and p′(N) ≥ p(N), it is also optimal to conceal given

prices p′, as prescribed by σ′.

Now consider the testing stage. If

φt ≥
∫ θ

µ+φd

[x− (µ+ φd)]dG(σ,p), (22)

then there exists an equilibrium in the evidence-test-fee structure in which the agent has the

asset tested with probability 0. The argument parallels that of Lemma 1. In particular,

consider a strategy profile (σ′, p′) such that that σ′T = 0, off-path the agent follows σ(s) if

p′(σ(s)) > µ + φd (p′(σ(s)) is well-defined as argued above) and otherwise conceals, and the

prices are p′(N) = µ and p(m) = p′(m) for all m 6= N . Since the set of disclosed messages
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in (σ′, p′) is a subset of that in (σ, p), an argument similar to above shows that the agent’s

disclosure strategy is sequentially rational. Also, by deviating to taking the test, the agent

receives an expected payoff lower than µ,∫ µ+φd

θ

µdG(σ,p) +

∫ θ̄

µ+φd

[x− φd]dG(σ,p) − φt = µ+

∫ θ̄

µ+φd

[x− (µ+ φd)]dG(σ,p) − φt ≤ µ,

where the inequality follows from (22). Therefore, the revenue in an adversarial equilibrium is

at most zero, which is obtained by any test-fee structure with zero fees. So suppose that (22)

is violated and consider a test-fee structure (G(σ,p), φ).

By Lemma 3, τ is a weak-highest equilibrium threshold of the test-fee structure. Also, since

(22) is violated, by Lemma 1 the test is taken with probability 1 in all equilibria. Therefore,

the revenue in an adversarial equilibrium of this test-fee structure is equal to the revenue in an

adversarial equilibrium of the evidence-test-fee environment.

We now consider the case σT ∈ [0, 1). Notice that in this case

φt ≥
∫ θ

p(N)+φd

[x− (p(N) + φd)]dG(σ,p) ≥
∫ θ

µ+φd

[x− (µ+ φd)]dG(σ,p),

so (22) holds. The argument above shows that the revenue in an adversarial equilibrium is at

most zero, which can be obtained in a test-fee structure with any test and zero fees. �

B.6 Using Only Disclosure Fees

Proposition 9. Suppose that the intermediary is restricted to using only disclosure fees. Then

there exists a test-fee structure (G, φ) in the step-exponential class, where G(τ2) = 1, that is

robustly optimal.

Proof. Consider any optimal test-fee structure (G′, φ′) when the intermediary is restricted to a

disclosure fee of zero (an optimal test-fee structure exists by an argument similar to Lemma 4).

Lemma 11 shows that that there exists a test-fee structure (G, φ) with φt ≤ φ′t in the step-

exponential-step class that generates a weakly higher revenue. Since φt ≤ φ′t, the intermediary

receives a weakly higher revenue from the disclosure fee in (G, φ) than in (G′, φ′), so (G, φ) also

maximizes revenue when the intermediary is restricted to a testing fee of zero.

Suppose that G(τ2) < 1 and that (G, φ) is parameterized by κ, τ0, . . . , τ3 as defined in (5),

(6), and (7). The robust revenue of this test-fee structure from the disclosure fee is φd(1−κ) =

(τ1− τ0)(1− κ). Note that τ2 < τ3 since G(τ2) < 1 = G(τ3). For ε1 ∈ [0, 1] and ε2 ∈ [0, τ3− τ2],

consider (Gε1,ε2 , φ) parameterized by κ′, τ ′0, . . . , τ
′
3 such that κ′ = κ − ε1, τ ′2 = τ2 + ε2, and

τ ′i = τi for i = 0, 1, 3. We show that there exist ε1, ε2 > 0 such that Gε1,ε2 is a mean-preserving
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contraction of G and gives a strictly higher revenue from a disclosure fee of (τ1− τ0)(1−κ+ ε2)

and therefore is robustly optimal.

For small enough ε1, ε2 so that Gε1,ε2(τ
′
2) ≤ 1, Gε1,ε2 is a well defined distribution function.

Notice that Gε1,ε2 is decreasing in ε1, and
∫ θ
θ
G0,ε2(s)ds −

∫ θ
θ
Gε1,ε2(s)ds ≥

∫ τ1
θ
G0,ε2(s)ds −∫ τ1

θ
Gε1,ε2(s)ds = ε1(τ1 − τ0) ≥ 0. Since

∫ θ
θ
G0,ε2(s)ds−

∫ θ
θ
G(s)ds is continuous in ε2 and goes

to 0 as ε2 goes to 0, for small enough ε2 > 0 there exists ε1 > 0 such that
∫ θ
θ
Gε1,ε2(s)ds =∫ θ

θ
G(s)ds. Moreover, Gε1,ε2(s) ≤ G(s) for s ≤ s∗, and Gε1,ε2(s) ≥ G(s) for s ≥ s∗, where

s∗ = τ2 − (τ1 − τ0) logα is the unique intersection of Gε1,ε2 and G on the interval (τ2, τ2 + ε2).

Thus, Gε1,ε2 is a mean-preserving contraction of G. �
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