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Abstract

We propose a new notion of credibility for Bayesian persuasion problems. A dis-
closure policy is credible if the Sender cannot profit from tampering with her messages
while keeping the message distribution unchanged. We show that the credibility of a dis-
closure policy is equivalent to a cyclical monotonicity condition on the policy’s induced
distribution over states and actions. We also characterize how credibility restricts the
Sender’s ability to persuade under different payoff structures. In particular, when the
Sender’s payoff is state-independent, all disclosure policies are credible. We apply our
results to the market for lemons, and show that no useful information can be credibly
disclosed by the seller, even though a seller who can commit to her disclosure policy

would perfectly reveal her private information to maximize profit.
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1 Introduction

When an informed party (Sender; she) discloses information to persuade her audience (Re-
ceiver; he), it is in her interest to convey only messages that steer the outcome in her own
favor: schools may want to inflate their grading policies to improve their job placement records;
credit rating agencies may publish higher ratings in exchange for future business. Even when
the Sender claims to have adopted a disclosure policy, she may still find it difficult to commit
to following its prescriptions, since the adherence to such policies is often impossible to mon-
itor. By contrast, what is often publicly observable is the final distribution of the Sender’s
messages: students’ grade distributions at many universities are publicly available, and so are
the distributions of rating scores from credit rating agencies.

Motivated by this observation, we propose a notion of credible persuasion. In contrast to
standard Bayesian persuasion, our Sender cannot commit to a disclosure policy; however, to
avoid detection, she must keep the final message distribution unchanged when deviating from
her disclosure policy. For example, in the context of grade distributions, if a university had
announced a disclosure policy that features certain fractions of A’s, B’s, and C’s, it cannot
switch to a distribution that assigns every student an A without being detected. Analogously,
if a credit rating agency were to tamper with its rating scheme, any resulting change in the
overall distribution of ratings will be detected. Our notion of credibility closely adheres to this
definition of detectability: we say that a disclosure policy is credible if given how the Receiver
reacts to her messages, the Sender has no profitable deviation to any other disclosure policy
that has the same message distribution.

Can the Sender persuade the Receiver by using credible disclosure policies? We find that
in many settings, no informative disclosure policy is credible. An important case where this
effect is exhibited is the market for lemons (Akerlof, 1970). Here, we show that the seller of
an asset cannot credibly disclose any useful information to the buyer; this effect arises even
though the seller benefits from persuasion when she can fully commit to her disclosure policy.
Conversely, we also provide conditions for when the Sender is guaranteed to benefit from
credible persuasion so that credibility does not entirely eliminate the scope for persuasion. In
general, we show that credibility is characterized by a cyclical monotonicity condition, which

is analogous to those studied in decision theory and mechanism design (Rochet, 1987).

To illustrate these ideas, consider the following example. A buyer (Receiver) chooses
whether to buy a car from a used car seller (Sender). It is common knowledge that 30% of the

cars are of high quality and the remaining 70% are of low quality. For simplicity, suppose that

1

all cars are sold at an exogenously fixed price.” The payoffs in this example are in Table 1.

n Section 3 we study a competitive market for lemons with endogenous prices, and emerge with similar
findings.



Buy Not Buy Buy Not Buy

High 2 1 High 1 0
Low 2 0 Low —1 0
Seller Buyer

Table 1: Used Car Example Payoffs

The seller always prefers selling a car, but the buyer is willing to purchase if and only if he
believes its quality is high with at least 0.5 probability. Conditional on a car being sold, the
seller obtains the same payoff regardless of its quality; but when a car is not sold, she receives
a higher value from retaining a high-quality car.

As a benchmark, let us first see what the seller achieves if she could commit to a disclosure
policy. We depict the optimal disclosure policy in Figure 1. The policy uses two messages,
pass and fail: all high-quality cars pass, along with 3/7 of the low-quality cars; the remaining
4/7 of the low-quality cars receive a failing grade. Conditional on the car passing, the buyer
believes that the car is of high quality with probability 0.5, which is just enough to convince
him to make the purchase. If a car fails, the buyer believes that the car is of low quality for
sure and will refuse to buy. With this disclosure policy, the buyer expects to see the seller

pass 60% of the cars and fail the remaining 40%.2

Prior Distribution Message Distribution
. 1
30% High > Pass 60%
3/7
70% Low » Fail 40%
47

Figure 1: Optimal Commitment Policy

The policy above is optimal for the seller if she can commit to following its prescriptions.
But suppose the buyer cannot observe how the seller rates her cars. Instead, the buyer only
observes the fraction of cars being passed and failed. In such a setting, the seller can profitably
deviate from the above disclosure policy without being detected by the buyer. Specifically,
the seller can switch to failing all high-quality cars while adding an equal number of low-
quality cars to the passing grade. This disclosure policy, illustrated in Figure 2, induces the

same distribution of messages (i.e., 60% pass, 40% fail). Holding fixed the buyer’s behavior,

2This example, by design, has the same solution as the prosecutor-judge example in Kamenica and
Gentzkow (2011).



this deviation is profitable for the seller because she still ends up selling the same number of
cars but now is able to retain more high-quality cars. Accordingly, we view the optimal full-
commitment policy to be not credible: after having promised to share information according
to a disclosure policy, the seller would not find it rational to follow through and would instead

profit from an undetectable deviation.

Prior Distribution Message Distribution
30% High Pass 60%
1
6/7
70% Low > Fail 40%
1/7

Figure 2: An Undetectable Deviation

More generally, we introduce the following notion of credibility for disclosure policies.
Consider a profile consisting of the Sender’s disclosure policy and the Receiver’s strategy
(mapping messages to actions). We say that a profile is Receiver incentive compatible if
the Receiver’s strategy best responds to the Sender’s disclosure policy—this requirement is
standard in Bayesian persuasion problems. We say that a profile is credible if, given the
Receiver’s strategy, the Sender has no profitable deviation to any other disclosure policy
that induces the same message distribution. Together, credibility and Receiver incentive
compatibility require that conditional on the Sender’s message distribution, the Sender and
Receiver best respond to each other.?

We have just argued that in the used car example, the optimal full-commitment disclosure
policy was not credible given the Receiver’s best response. Can any car be sold in a profile that
is both credible and Receiver incentive compatible? The answer is no. Note that zero sales
is also the outcome when no information is disclosed. In other words, credibility completely
shuts down the possibility for useful information transmission.

To see why, suppose towards a contradiction that the buyer purchases a car after observing
a message my that is sent with positive probability. By Receiver incentive compatibility, the
buyer must believe that the car is of high quality with at least 0.5 probability after observing
my. Since my is sent with positive probability, the martingale property of beliefs implies that
there must be another message ms, also sent with positive probability, that makes the buyer
assign less than 0.5 to the car’s quality being high. Necessarily, when the buyer observes the

message ms, he does not make a purchase. This creates an incentive for the seller to tamper

30ur solution-concept is therefore analogous to an equilibrium condition in which the set of feasible devi-
ations for the Sender is to other disclosure policies that induce the same message distribution.



with her disclosure policy: by exchanging some of the good cars being mapped into m, with an
equal number of bad cars being mapped into ms, she can improve her payoff without changing
the distribution of messages.

One may wonder if credibility always shuts down communication entirely. The next ex-
ample features a setting in which the optimal full-commitment disclosure policy is credible.
Consider the disclosure problem faced by a school (Sender) and an employer (Receiver).? Just
as in the used car example, a student’s ability is either high with probability 0.3 or low with
probability 0.7. Payoffs are as shown in Table 2. The employer is willing to hire a student if
he believes the student has high ability with at least 0.5 probability. The school would like
all its students to be employed, but derives a higher payoff from placing a good student than

it does from placing a bad one.

Hire Not Hire Hire Not Hire
High 2 0 High 1 0
Low 1 0 Low —1 0
School Employer

Table 2: School Example Payoffs

The school’s optimal full-commitment disclosure policy is identical to the one in the used
car example (Figure 1), and so are the employer’s best responses. But unlike the used car
example, the school cannot profitably deviate without changing the message distribution.

To see why, note that without changing the message distribution, any deviation must
involve passing some low ability students while failing an equal number of high ability students.
This would increase the employment of low ability students at the expense of their high
ability counterparts, which makes the school worse off. Since the school cannot profit from
undetectable deviations, the optimal full-commitment policy is credible. In contrast to the
previous example where credibility shuts down all useful communication, the current example
shows that credibility sometimes imposes no cost on the Sender relative to persuasion with

full commitment.

In the two examples above, credibility has starkly different implications for information
transmission. The key difference is that in the used car example, when the car’s quality is
higher, the Sender has a weaker incentive to trade while the Receiver’s incentive to trade is
stronger; in the school example, by contrast, both the Sender and Receiver have a stronger

incentive to trade as the student’s ability increases. Our results formalize this intuition.

4See Ostrovsky and Schwarz (2010) for an early study of how schools strategically design their grading
policies in a competitive setting.



Proposition 2 shows that when the Sender and Receiver’s preferences have opposite mod-
ularities (e.g. when the Sender’s payoff is strictly supermodular and the Receiver’s payoff is
submodular), no useful information can be credibly communicated. Even when players’ prefer-
ences share the same modularity, the Sender does not always benefit from credible persuasion
relative to the no-information benchmark. Proposition 3 and Proposition 4 provide additional
conditions that guarantee the Sender does benefit from credible persuasion, as well as con-
ditions under which the optimal full-commitment disclosure policy is credible. Proposition 5
provides a comparative statics result on preference alignment.

Generalizing further, we use optimal transport theory to characterize credibility using a
familiar condition from mechanism design and decision theory—cyclical monotonicity. The-
orem 1 shows that for every profile of Sender’s disclosure policy and Receiver’s strategy, the
credibility of the profile is equivalent to a cyclical monotonicity condition on its induced dis-
tribution over states and actions. As is illustrated in the examples above, credibility requires
that the Sender cannot benefit from any pairwise swapping in the matching of states and ac-
tions. The cyclical monotonicity condition generalizes this idea to cyclical swapping: for every
sequence of state-action pairs in the support, the sum of the Sender’s utility should be lower
after the matchings of states and actions in this sequence are permuted. In Appendix B.1, we
discuss the connection of Theorem 1 to Rochet (1987).

Our paper offers foundations for Bayesian persuasion models in settings where the Sender
provides information about a population of objects. In such environments, if the Sender’s pay-
off is state-independent, all disclosure policies are credible, so the full-commitment assumption
in the Bayesian persuasion approach is nonessential as long as the message distribution is ob-
servable. Additionally, our model also provides a rationale for considering monotone disclosure

policies, which are credible when the Sender’s payoff is supermodular.

The rest of the paper is organized as follows: Section 2 introduces our credibility notion
as well as the main results. Section 3 considers an application: in the market for lemons with
endogenous prices, we show that the seller cannot credibly disclose any useful information to
the buyers, even though full disclosure would maximize the seller’s profit. Section 4 discusses
the effect of Receiver mixing. Section 5 concludes. All omitted proofs are in Appendix A.
The remainder of this introduction places our contribution within the context of the broader

literature.

Related Literature: Our work contributes to the study of strategic communication. The

Bayesian persuasion model in Kamenica and Gentzkow (2011) studies a Sender who can fully



commit to a disclosure policy.> By contrast, the cheap-talk approach pioneered by Crawford
and Sobel (1982) models a Sender who observes the state privately and, given the Receiver’s
strategy, chooses an optimal (sequentially rational) message. The partial-commitment setting
that we model is between these two extremes: here, the Sender can commit to a distribution
over messages but not the entire disclosure policy.

Our model considers a Sender who can misrepresent her messages as long as the misrep-
resentation still produces the original message distribution. This contrasts with existing ap-
proaches to modeling limited commitment in Bayesian persuasion. One approach, pioneered
by Fréchette, Lizzeri, and Perego (2021), Min (2021), and Lipnowski, Ravid, and Shishkin
(2022), is to allow the Sender to alter the messages from her chosen disclosure policy with
some fixed probability. A different method of modeling limited commitment is to consider set-
tings where the Sender can misreport at a cost.® For example, Guo and Shmaya (2021) study
a Sender who pays a cost when the posterior beliefs induced by her messages are miscalibrated
from their literal meanings; Nguyen and Tan (2021) consider a Sender who can costly revise
the messages from her chosen disclosure policy; Perez-Richet and Skreta (2021) consider a
Sender who can falsify the state, or input, of the disclosure policy. Another approach, taken
in Libgober (2022), is to consider a Sender who publicly chooses some dimension of the signal
structure while privately choosing the other dimension. Finally, Perez-Richet (2014), Hedlund
(2017), Koessler and Skreta (2021), and Zapechelnyuk (2023) allow the Sender to have private
information before choosing the disclosure policy. In these settings, Receiver infers the state
through the messages from the disclosure policy as well as the signaling effect of the Sender’s
choice of information structures.

The way that we model the Sender’s feasible deviations is closely related to the literature
on quota mechanisms, which use message budgets to induce truth-telling; see, for example,
Jackson and Sonnenschein (2007), Matsushima, Miyazaki, and Yagi (2010), Rahman (2010),
and Frankel (2014). Similar ideas have also been explored in communication games. For
example, Chakraborty and Harbaugh (2007) consider multi-issue cheap-talk problems, and
study equilibria where the Sender assigns a ranking to each issue. In such equilibria, a mes-
sage is a complete or partial ordering of all the issues, and any on-path deviation is a different
ordering that maintains the same distribution of rankings. Renault, Solan, and Vieille (2013)
study repeated cheap-talk models where only messages and the Receiver’s actions are pub-
licly observable. They characterize equilibria in the repeated communication game via a
static reporting game where the Sender directly reports her type. The key condition in their

characterization requires truthful reporting to be optimal among all reporting strategies that

®Brocas and Carrillo (2007) and Rayo and Segal (2010) also study optimal disclosure policy in more specific
settings.
6This approach was initially introduced by Kartik (2009) to study language inflation.



replicate the true type distribution, which is akin to Rahman (2010)’s characterization of
implementable direct mechanisms. Margaria and Smolin (2018) use a different approach to
study the case where the Sender’s payoff is state-independent, and Meng (2021) provides a
unified approach to characterizing the Receiver’s optimal value in these repeated cheap-talk
models. Kuvalekar, Lipnowski, and Ramos (2021) study a related model where the Receiver is
short-lived, and show that the equilibrium payoffs can be characterized via a static cheap-talk
model with capped money burning.

A different strand of the repeated cheap-talk literature studies models where the Receiver
can observe feedback about past state realizations. Best and Quigley (2020) consider how
coarse feedback of past states can substitute for commitment; Mathevet, Pearce, and Stac-
chetti (2022) allow for the possibility of non-strategic commitment types; Pei (2020) studies
a setting where the Sender has persistent private information about her lying cost.

Finally, our approach to credible persuasion is reminiscent of how Akbarpour and Li
(2020) model credible auctions. They study mechanism design problems where the designer’s
deviations are “safe” so long as they lead to outcomes that are possible when she is acting
honestly, and characterize mechanisms that ensure the designer has no safe and profitable
deviations. By contrast, we study persuasion problems where the Sender’s deviations are
undetectable if they do not alter the message distribution, and characterize disclosure policies

where the Sender has no profitable and undetectable deviations.

2 Model

2.1 Setup

We consider an environment with a single Sender (S she) and a single Receiver (R; he). Both
players’ payoffs depend on an unknown state # € © and the Receiver’s action a € A. Both ©
and A are finite sets.” The payoff functions are given by ug : © x A — Rand up : © x A — R.
Players hold full-support common prior py € A(O).

Let M be a finite message space that contains A. The Sender chooses an information
structure to influence the Receiver’s action. Specifically, an information structure A € A(© x
M) is a joint distribution of states and messages, so that the marginal distribution of states
agrees with the prior; that is, A\e = 1.® The Receiver chooses an action after observing each

message according to a pure strategy o : M — A.°

“In Appendix B.6, we show that our main characterization result extends to the case where © and A are
compact Polish spaces.

8For a probability measure P defined on some product space X x Y, we use Px and Py to denote its
marginal distribution on X and Y, respectively.

9We focus on pure strategies to abstract from the Receiver using randomization to deter the Sender’s



Our interest is in understanding the Sender’s incentives to deviate from her information
structure, which depends on the Receiver’s strategy. To avoid ambiguity, we refer explicitly to
pairs of (A, o)—or profiles—that consist of a Sender’s information structure and a Receiver’s

strategy. For each profile (A, o), the players’ expected payoffs are
Us(\ o) => us(@,0(m)A@,m)  and  Ug(\,0) =Y ug(d,o(m))\0,m).
0,m 0,m

We consider a setting where the Sender cannot commit to her information structure,
and can deviate to another information structure so long as it leaves the final message
distribution unchanged. This embodies the notion that the distribution of the Sender’s
messages is observable, even though it may be difficult to observe exactly how these mes-
sages are generated. Formally, if A is an information structure promised by the Sender, let
D) ={N € A(© x M) : \g = po, Nyy = Anr} denote the set of information structures that
induce the same distribution of messages as \: these information structures are indistinguish-
able from X from the Receiver’s perspective. Our credibility notion requires that conditioning
on how the Receiver responds to the Sender’s messages, no deviation in D(\) can be profitable
for the Sender.

Definition 1. A profile (A, o) is credible if

A€ argma)x Z ug(0,a(m)) N (6,m). (1)
0,m

NeD(A

Moreover, the Receiver’s strategy is required to be a best response to the Sender’s infor-

mation structure.

Definition 2. A profile (A, o) is Receiver incentive compatible (R-1C) if

0 € argmax Z ur(6,0'(m)) X6, m). (2)

o :M—A P
m

Together, credibility and R-IC ensure that conditioning on the message distribution of the
Sender’s information structure, both the Sender and the Receiver best respond to each other.
An immediate observation is that there always exists a “babbling” profile (A, o) that is both
credible and R-IC: a degenerated information structure that sends only one message, and a
Receiver strategy that best responds to the prior after observing this message.

Note that the credibility notion can be viewed as merely incorporating an additional con-

straint in the design of information structures. Some of our results focus on Sender optimality,

deviations. This restriction is not without loss of generality, though some of our results can be extended to
allow Receiver mixing. See Section 4 for a more detailed discussion of this assumption.



but the notion can be applied to different design objectives. It is also worth noting that cred-
ibility is a constraint that is independent from Receiver incentive compatibility. As a result,
our credibility notion can be applied more broadly to settings where the consequences of the
Sender’s messages can be specified via an “outcome function.” As an application, we apply
our credibility notion to a setting with multiple Receivers in Section 3.

Finally, our credibility notion is motivated by the observability of the Sender’s message
distribution, which we model as a restriction on the Sender’s feasible deviations. The ob-
servability of message distributions is best understood through a population interpretation of
persuasion models,'” where there is a continuum of objects with types distributed according
to pp € A(O). The Sender’s information structure A assigns each object a message based on
its type, which generates a message distribution \;;. Working with a continuum population
affords us a cleaner exposition by abstracting from sampling variation. In Appendix B.2, we
consider a finite approximation where the Sender privately observes NN i.i.d. samples from
o € A(O), and assigns each realization a message m € M subject to quotas on message
frequencies; the Receiver then chooses an action after observing the Sender’s message. We
show that credible and R-IC profiles in our continuum model are approximated by those in

the finite-sample model when the sample size N becomes large.

2.2 Stable Outcome Distributions

We characterize credible and Receiver incentive compatible profiles through the induced prob-
ability distribution of states and actions. Formally, an outcome distribution is a distribution
m € A(O x A) that satisfies mg = po: this is a consistency requirement that stipulates that the
marginal distribution of states must conform to the prior. We say an outcome distribution 7 is
induced by a profile (), o) if for every (6,a) € © x A, 7(0,a) = A\(0,07"(a)), where 7! is the
inverse mapping of 0. We are interested in characterizing outcome distributions that can be
induced by profiles that are both credible and R-IC, and refer to such outcome distributions

as stable.

Definition 3. An outcome distribution m € A(© x A) is stable if it is induced by a profile
(A, o) that is both credible and R-IC.

Our first result characterizes stable outcome distributions.

Theorem 1. An outcome distribution m € A(© x A) is stable if and only if:

0For a more detailed discussion of various interpretations of Bayesian persuasion models, see e.g. Section
2.2 of Kamenica (2019).



1. 7 is ugr—obedient: for each a € A such that 7(0,a) > 0,

ZW(&&) ugr(0,a) > Zﬂ(&,a) ur(6,a’) for all a' € A.

0cO 0cO

2. 7 is ug—-cyclically monotone: for any sequence (01,a1),...,(0,,a,) € supp(m) where

Qp4+1 = G1,

Z ug(0;, a;) > Z ug(0;, ait1).
i=1 i=1

The first condition is the standard obedience constraint (Bergemann and Morris, 2016;
Taneva, 2019), which specifies that the Receiver finds it incentive compatible to follow the
recommended action given the belief that she forms when receiving that recommendation. The
second condition, namely ug-cyclical monotonicity, is the new constraint that maps directly to
our notion of credibility. While both the necessity and sufficiency of ug-cyclical monotonicity
can be proven by invoking the Kantorovich duality from optimal transport theory, below we
outline a direct proof to better illustrate the intuition behind ug-cyclical monotonicity. The
full version of this proof can be found in Lemma 2 in Appendix A.

Consider an outcome distribution 7 and a sequence (6;,a;)? ; in the support of 7. For
intuition, let us regard 7 as a direct-recommendation information structure. A “cyclical”
deviation in this case consists of subtracting € mass from (6;, a;) while adding it to (6;, a;+1)
for each ¢ = 1,...,n, where a,,1 = a;. FEach step of this cyclical deviation changes the

Sender’s payoff by € [us(6;, aiy1) — us(6;,a;)], so the total change in the Sender’s payoff is

E[Z us(0;,a;41) — Zus(ei, ai)] .

The cyclical monotonicity condition requires that the Sender can find no profitable cyclical
deviations.

To see why this is necessary for credibility, observe that cyclical deviations do not change
the distribution of action recommendations, so any such deviation cannot be detected solely
on the basis of the distribution of messages. Credibility requires that these undetectable
deviations are not profitable, which implies the cyclical monotonicity condition.

For sufficiency, a key observation is that any outcome distribution 7 € A(© x A) can
be approximated by a distribution with rational marginals, which can then be normalized
and transformed into doubly stochastic matrices. According to the Birkhoff-von Neumann
theorem, permutation matrices form the extreme points of all doubly stochastic matrices.

In addition, each permutation matrix corresponds to a cyclical deviation. So in a rough

10



sense, cyclical deviations are (approximately) the extreme points of all undetectable Sender
deviations. It is therefore sufficient to ensure no cyclical deviations are profitable.

When verifying the cyclical monotonicity condition, one can in fact restrict attention to
deviations of length n < min{|©|,|A|}. This is because if there is any profitable cyclical
deviation exceeding this length, we can split it into two shorter cyclical deviations, at least
one of which is profitable. This observation, which is formalized in Appendix B.3, implies that
it is sufficient to check a finite number of deviations. However, the total number of deviations
can still be quite large, which may make it challenging to verify cyclical monotonicity. In

Section 2.4, we impose additional structures on players’ payoffs to gain further tractability.

The next result establishes the existence of a Sender-optimal credible and R-IC profile,

and shows that it need not involve more than min{|©|, |A|} messages.

Proposition 1. There exists a Sender-optimal credible and R-1C profile (\*, 0*) where \* has

no more than min{|©|, |A|} messages.

The existence follows from the fact that the set of stable outcome distributions is compact.
The bound on the number of messages in Proposition 1 parallels a similar result for optimal
persuasion under full commitment. For any Sender-optimal stable outcome distribution 7*,
we can take 7 as the “direct recommendation” information structure that uses no more than
|A| messages. For each a € supp(7), let p, denote the posterior belief induced by 7*, and
v, denote the Sender’s value under posterior j,. These (j,,v,) pairs reside in RI®l, but by
the optimality of 7*, it can be further shown that all such (i, v,) pairs must lie on the same
hyperplane in R®!| which has dimension |©| — 1. Applying Carathéodory’s theorem on this
hyperplane allows us to obtain the |©| bound while reducing the support of the outcome

distribution, which relaxes both the ug-cyclical monotonicity and ug-obedience constraints.

2.3 The Case of State-Independent Preferences

If ug(0,a) is state independent, then ug—cyclical monotonicity is automatically satisfied. So

we have the following observation.!!

Observation 1. If ug(0,a) = h(a) for some h : A — R, then every outcome distribution that

satisfies ur-obedience is stable.

Therefore, in this case, there is no gap between what is achievable by a Sender who can
fully commit to an information structure relative to a Sender who can only commit to a

distribution of messages.

"The same observation holds if w(#,a) = r(#) + h(a) for some r : © — R and h : A — R, as adding an
action-independent nuisance term does not change the Sender’s preferences over outcome distributions given
the exogenous prior distribution on ©.

11



State-independent payoffs feature in many analyses of communication and persuasion (e.g.
Chakraborty and Harbaugh, 2010; Alonso and Camara, 2016; Lipnowski and Ravid, 2020;
Lipnowski, Ravid, and Shishkin, 2021; Gitmez and Molavi, 2022). In these settings, when the
Sender is not disclosing information about a population (thus making it difficult to observe
the message distribution), generally the optimal full-commitment outcome cannot be achieved.
By contrast, our analysis suggests that when one can adopt the population interpretation for
Bayesian persuasion models, the Sender can exercise full commitment power by making public

the distribution of her messages.

2.4 When is Credibility Restrictive?

When the state and action interact in the Sender’s payoff, credibility limits the Sender’s
choice of information structures. The goal of this section is to understand how these limits
can restrict the Sender’s ability to persuade the Receiver.

In the examples in Section 1, we see that whether the Sender can credibly persuade the
Receiver depends crucially on the alignment of their marginal incentives to trade. To un-
derstand this logic more generally, we assume that © and A are totally ordered sets, which
without loss of generality can be assumed to be subsets of R. Recall that a payoff function

u:0 x A— Ris supermodular if for all 8 > #" and a > @/, we have
uw(B,a) +u(@,a") > ud,d) +ul@, a),

and submodular if
w(@,a) +u(d,a) <u(d a)+u@, a).

Furthermore, the function is strictly supermodular or strictly submodular if the inequalities
above are strict for # > ¢ and a > d.

The modularity of players’ payoff functions captures how the marginal utility from switch-
ing to a higher action varies with the state. This generalizes the marginal incentive to trade in
the examples in Section 1: intuitively, the Sender and the Receiver have aligned marginal in-
centives when both players’ payoff functions share the same modularity, and opposed marginal
incentives when their payoff functions have opposite modularities. To fix ideas, we will assume
that the Sender’s payoff is supermodular and vary the modularity of the Receiver’s payoft.

We now introduce a lemma that simplifies the ug-cyclical monotonicity condition in
Theorem 1 when the Sender’s payoff is supermodular. Say that an outcome distribution
m € A(OxA)is comonotone if for all (0, a), (#',a’) € supp(r) satisfying 6 < ¢, we have a < a'.
Comonotonicity requires that the states and the Receiver’s actions are positive-assortatively

matched in the outcome distribution. The following lemma, whose variant appears in Rochet
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(1987), shows that ug-cyclical monotonicity reduces to comonotonicity when the Sender’s

preference is supermodular.

Lemma 1. If ug is supermodular, then every comonotone outcome distribution is ug-cyclically
monotone. Furthermore, if us is strictly supermodular, then every us-cyclically monotone

outcome distribution is also comonotone.

Combined with Theorem 1, Lemma 1 implies that when the Sender’s preference is strictly
supermodular, the credibility of a profile (A, o) is equivalent to the comonotonicity of its
induced outcome distribution. Comonotone outcome distributions have attracted much at-
tention in the persuasion literature in part due to their simplicity and ease of implementation;
for example, see Dworczak and Martini (2019), Goldstein and Leitner (2018), Mensch (2021),
Ivanov (2020), Kolotilin (2018), and Kolotilin and Li (2020). Our credibility notion provides

an additional motivation for focusing on monotone information structures.

Remark 1. Lemma 1 is particularly relevant when ug(6,a) is affine in 0: that is, when there
exist 79(a) and 7;(a) such that ug(6,a) = no(a) + n1(a)d for all ,a. In this case, an outcome
distribution 7 is ug-cyclical monotone if and only if for all (6, a), (¢, a’) € supp(r) with § < @',
we have 1;(a) < my (@'). In other words, higher states are matched with actions that lead to
higher slope terms in ug(f,a). The reason is that we can define an order on A: a’ > a if and
only if ni(a’) > m (a), so that ug is strictly supermodular with respect to such order.!? The
payoff function ug (0, a) = no(a) + n1(a)f underlies much of the literature on “posterior-mean”

problems, which includes several of the papers cited above.

As benchmarks, we will often draw comparisons to what the Sender can achieve when she
can fully commit to her information structure, as well as what is achievable when all or no
information is disclosed. We say an outcome distribution 7* is an optimal full-commitment
outcome if it maximizes the Sender’s payoff among outcome distributions that satisfy wg-
obedience. An outcome distribution 7 is a fully revealing outcome if the Receiver always

chooses a best response to every state; that is,

a € argmaxug(f,a’) for every (0,a) € supp(7).
a’cA

Finally, an outcome distribution 7 is a no-information outcome if the Receiver always chooses

the same action that best responds to the prior belief pg; in other words, there exists

a* € arg maxZuo(H)uR(H,a) such that m,(a") = 1.
acA 9co

12Note that the order > defined as such may not be antisymmetric. Nevertheless, the proof of Lemma 1 holds
as long as > is complete and transitive. In Appendix A, we prove Lemma 1 without assuming antisymmetry.
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We say the Sender benefits from persuasion if an optimal full-commitment outcome gives
the Sender a higher payoff than every no-information outcome. Similarly, we say the Sender
benefits from credible persuasion if there exists a stable outcome distribution that gives the

Sender a strictly higher payoff than every no-information outcome.

When Credibility Shuts Down Communication: The next result generalizes the used-
car example in Section 1. To simplify the statement of the result, we impose the following

regularity assumption on the Receiver’s payoff function.
Assumption 1. There exist no distinct a,a’ € A such that ur(0,a) = ug(0,d’) for all 6 € ©.

In other words, from the Receiver’s perspective, there are no duplicate actions. This
assumption is not without loss, but greatly simplifies the statement of Proposition 2 and

Proposition 3 below.

Proposition 2. Under Assumption 1, if ug is strictly supermodular and ug is submodular,

then every stable outcome distribution is a no-information outcome.

Proposition 2 says that when the players have opposed marginal incentives, credibility
completely shuts down information transmission. The logic generalizes what we saw in the
used-car example: if two distinct messages resulted in different actions from the Receiver, the
Sender and Receiver would have diametrically opposed preferences regarding which action to
induce in which state. Therefore whenever R-IC is satisfied, the Sender will have an incentive
to deviate to another information structure that swaps states and induces the same marginal

distribution of messages.

When the Sender Benefits from Credible Persuasion: In light of the school example
in Section 1, one might expect credibility to not limit the Sender’s ability to persuade when her
marginal incentives are aligned with the Receiver’s. However, this is false without imposing
additional assumptions. For an illustration, consider the following example, in which both the
Sender and Receiver have supermodular payoffs. The Sender benefits from persuasion when
she can fully commit to her information structure, but no stable outcome distribution can

give her a higher payoff than the best no-information outcome.

Example 1. Suppose © = {H, L} with prior po = P(0 = H) = 0.6 and A = {a1,as,a3,a4}.
The Sender and Receiver’s payoffs are as given in Table 3. Note that both players’ payoffs
are strictly supermodular. The Receiver’s best response is a; when po € [0,0.25), as when
o € [0.25,0.5), az when po € [0.5,0.75), and ay when ug € [0.75, 1]; this leads to the Sender’s

indirect utility function (blue) and its concave envelope (red) depicted in Figure 3. From
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us(0,a) | ay as as ay
0=H -1 | 0.75 1 0
=1L 0 0.75 | 0.5 -1

UR(Q, (I) ai as as Qay

0=H 0 06 | 08 1 ai “
=L | 1 | 08 ] 06 ] 0 0

Table 3: Sender and Receiver’s payoffs Figure 3: Concavification

Kamenica and Gentzkow (2011), the red line represents the Sender’s optimal value under full
commitment. It is clear that at py = 0.6, the Sender strictly benefits from persuasion if she
can fully commit to her information structure.

However, no stable outcome distribution can make the Sender better off than the no-
information outcome. To see why, first note that according to Proposition 1, it is without
loss to look for Sender-optimal credible and R-1C profiles that induce only two posterior beliefs
1 < pa. Now consider the Receiver’s actions induced by these two posteriors. By Lemma 1,
at most one of these actions can be matched with more than one state, for otherwise the
outcome distribution would not be comonotone. So at most one of the actions can be induced
by interior posterior beliefs. However, it is clear from Figure 3 that in order for the Sender to
benefit from using only two posteriors, she must induce both as and as, both of which can only
happen when the Receiver holds interior beliefs. As a result, no credible and R-1C profiles can
make the Sender better off.

Example 1 above shows that besides the co-modularity of preferences, additional conditions
are needed in order to ensure the Sender can benefit from credible persuasion. Proposition 3
below offers several such conditions.

Let A°={a € A:a € argmax, Y ,u(0)ur(f,a’) for some p € A(O)} denote the set of
actions that are best responses to some belief of the Receiver; clearly, actions that are not
in A° would never be played by the Receiver in any R-IC profile, and can without loss be
discarded from the action set A. Let @ = max A° and a = min A° denote the highest and

lowest actions in A°, and let § = max © and # = min © denote the highest and lowest states.

Proposition 3. Suppose both ug and ug are supermodular, and Assumption 1 holds, then
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1. If the highest action is dominant for the Sender, that is, if ug(0,a) > us(6,a) for all 0
and a € A°\{a}, then for generic priors,'® the Sender benefits from credible persuasion

as long as she benefits from persuasion.

2. If the Sender favors extreme actions in extreme states, that is, if ug(0,a) > us(0,a)
for all a # @ and ug(0,a) > us(8,a) for all a # a, then for generic priors, the Sender

benefits from credible persuasion.

3. If the Sender is strictly better off from a fully revealing outcome than from every no-

information outcome, then the Sender benefits from credible persuasion.

The first condition in Proposition 3 is satisfied in settings like the school example, where
the school and the employer’s preferences are both supermodular, and the school would always
want to place a student regardless of the student’s ability. The second condition is applicable
in environments where both parties have agreement on extreme states. For example, both
doctors and patients favor aggressive treatment if the patient’s condition is severe, and both
favor no treatment if the patient is healthy, but they might disagree in intermediate cases.
Lastly, a special case of the third condition is quadratic-loss preferences as commonly used in
models of strategic communication (e.g. Crawford and Sobel, 1982).1* However, note that the
conditions in Proposition 3 do not guarantee the Sender her optimal full-commitment payoff.
In Appendix B.4, we provide an example satisfying the first condition in Proposition 3. The
Sender in this example can benefit from credible persuasion, but is unable to achieve the
optimal full-commitment payoff.

The first two parts of Proposition 3 are based on belief splitting. Let us briefly describe
the proof for the first condition; the proof for the second part follows similar arguments. Note
that if @ is a dominant action for the Sender, and the Sender can benefit from persuasion
(under full commitment), then @ must not already be a best response for the Receiver under
the prior p9. The Sender can then split the prior into a point mass posterior d; and some
other posterior i that is close to py. At dg, the Receiver is induced to choose @ since his payoff
is supermodular. In addition, for generic priors the Receiver’s best response to fi remains the
same as his best response to po. The Sender benefits from this belief-splitting since the same
action is still played most of the time, but in addition her favorite action is now played with
positive probability. Moreover, the resulting outcome distribution matches higher states with

higher actions, so it is stable due to the supermodularity of ug and Lemma 1.

13Formally, by generic we mean that the result holds under a set of priors T C A(©) that is open, dense,
and has full Lebesgue measure.

14The model in this section has finite action spaces, so we need to additionally assume that the action space
is rich enough such that the Sender’s indirect utility function approximates the one under a continuous action
space.
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The third part of Proposition 3 follows because the fully revealing outcome distribution is
always credible when both players’ preferences are supermodular. The intuition of this result is
most transparent when the Sender’s payoff is strictly supermodular. Consider (0, a) and (6',a’)
in the support of a fully revealing outcome distribution 7, so @ and a’ best respond to 6 and ¢’,
respectively. From Topkis (2011), it follows that a > o’ if @ > #’. Therefore, 7 is comonotone
and satisfies ug-cyclical monotonicity by Lemma 1. By construction, 7 also satisfies ug-
obedience, so 7 is stable by Theorem 1. This result is closely related to Theorem 1 and
Theorem 2 of Chakraborty and Harbaugh (2007). They show that in multi-issue cheap-talk
problems, truthfully revealing the rankings of the issues is an equilibrium under supermodular
preferences; in addition, when the number of issues grows to infinity, revealing their rankings
is asymptotically equivalent to revealing their values. The credibility of the fully revealing
outcome can therefore be viewed as the limit of a rank revealing equilibrium in Chakraborty
and Harbaugh (2007).

When Credibility Imposes No Cost to the Sender: In Observation 1, we see that
when the Sender’s payoff is additively separable, credibility does not restrict the set of stable
outcomes. Proposition 4 below provides a condition which guarantees that credibility imposes
no loss on the Sender’s optimal value, even when credibility does restrict the set of stable

outcomes.

Proposition 4. Suppose |A| = 2. If both us and ugr are supermodular, then at least one
optimal full-commitment outcome is stable; if in addition ug is strictly supermodular, then

every optimal full-commitment outcome is stable.

Proposition 4 says that in settings where both players have supermodular payoffs and the
Receiver faces a binary decision, such as “accept” or “reject”; then credibility imposes no
cost to the Sender. This result follows from combining our Theorem 1 and Lemma 1 with
Theorem 1 in Mensch (2021). He shows that under the assumptions in our Proposition 4,
there exists an optimal full-commitment outcome that is comonotone. The intuition is that
for any outcome distribution 7 that is ug-obedient but not comonotone, the Sender can
weakly improve her payoff by swapping the non-comonotone pairs in the support of 7, so
that they become matched assortatively. Such swapping also benefits the Receiver due to
the supermodularity of ug, so ug-obedience remains satisfied. As a result, the Sender can
always transform a non-comonotone outcome distribution into one that is comonotone without
violating ug-obedience, while weakly improving her own payoff. Therefore, there must be an
optimal full-commitment outcome that is comonotone, which is also stable by Theorem 1 and

Lemma 1.
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Comparative Statics: Our analysis thus far demonstrates that the mode of preference
alignment plays a crucial role in determining the scope of credible persuasion. In this section,
we provide a comparative statics result relating the Sender’s optimal credible-persuasion payoff
to the degree of preference alignment.

In order to measure the Sender’s utility on a constant scale, we will keep the Sender’s
payoff function unchanged and adjust only the Receiver’s payoff.!> Following Section IV of
Kamenica and Gentzkow (2011), we say preferences (ug, uy) are more aligned than (ug, ug)
if for any a € A and any u € A(O),

B, [us(6,a(1))] > E,[us(6. )] = Bu[us (0.8/(1))] > E,[us(6.a)],

where a(p) € argmax,c 4y, 1(0)ur(6,a) and @' (1) € argmax,c 4 » -, 1(0)ur(0, a) denote the
Receiver’s best response function, with ties broken in the Sender’s favor.
The following result shows that when payoffs are supermodular and preferences become

more aligned, the Sender is guaranteed a higher payoff from credible persuasion.'®

Proposition 5. Suppose ug, ur, and u'y are strictly supermodular payoff functions. If in
addition the preferences (ug,uy) are more aligned than (us,ug), then under (us,u) the
Sender obtains a higher payoff from a Sender-optimal stable outcome distribution compared to

under (ug, ur).

To prove Proposition 5, we take an optimal stable outcome distribution 7 under the
less aligned preferences (ug, ug), and show that when this same 7 is used as an information
structure under the more aligned preferences (ug, u/;), it induces a stable outcome distribution
that offers the Sender a superior payoff. Specifically, consider the outcome distribution x’
induced by the Receiver choosing the Sender-favored best responses to m under (ug,u’).
Since 7 is a stable outcome distribution under (ug,ugr) and ug is supermodular, it follows
that 7 must be comonotone; this combined with the fact that u}, is supermodular implies
that 7’ is also comonotone, and therefore stable under (ug,u’,). Moreover, as (ug, u;) is more
aligned than (ug,ug), following each message from 7, the Receiver’s chosen action in 7’ is
more favorable to the Sender than the recommended action from 7. The Sender obtains a

higher payoff from 7' compared to 7, and therefore must be better off under (ug,u’) than

(ug, ug).

15Tn fact, the change of ug would only affect the Sender’s optimal credible-persuasion payoff through a
scaling effect: according to Theorem 1 and Lemma 1, credibility is equivalent to the outcome distribution
being comonotone as long as ug is strictly supermodular. So under our maintained assumptions on payoff
functions, the set of stable outcome distributions would be unaffected by modifications in the Sender’s payoff
function.

16 As an example, Appendix B.5.1 provides a class of preferences that meets the requirements of Proposition 5.
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It is worth noting that under the assumptions of Proposition 5, more aligned preferences
do not guarantee a larger set of stable outcome distributions. We illustrate this point with an
example in Appendix B.5.2, where the set of stable outcome distributions first expands and

then shrinks as the players’ preferences become more aligned.

3 Application: The Market for Lemons

A classic insight from Akerlof (1970) is that in markets with asymmetric information, adverse
selection can lead to substantial efficiency loss. In practice, buyers and sellers often rely on
warranty or third-party certification to overcome this inefficiency. A seemingly more direct
solution to their predicament is for the seller to fully reveal her private information, so that
there is no information asymmetry between players. In this section, however, we show that
this apparently easy fix to the adverse selection problem relies on unrealistic assumptions on
the seller’s ability to commit. Indeed, we show that any information disclosure that improves
efficiency cannot be credible.

To fix ideas, we adapt the formulation in Mas-Colell, Whinston, and Green (1995) and
consider a seller who values an asset she owns (say, a car) at § € © C [0, 1]; two buyers (1
and 2) both value the car at v(f) which is weakly increasing in #. Buyers share a common
prior belief 1y € A(O). We assume v(f) > 6 for all 6 € © so there is common knowledge of
gain from trade. Moreover, we assume E, [v(f)] < 1 so that without information disclosure,
some cars will not be traded due to adverse selection. Below we first describe the base game
without information disclosure, then augment the base game to allow the seller to choose an

information structure to influence the buyers’ beliefs.

The Base Game G: The seller and the buyers move simultaneously. The seller learns
her value and chooses an ask price a; € Ag = [0,v(1)]; each buyer ¢ = 1,2 chooses a bid
b; € A; = [0,v(1)]. If the ask price is lower than or equal to the highest bid, the car is sold at
the highest bid to the winning buyer, and ties are broken evenly. If the ask price is higher than
the highest bid, the seller keeps the car and receives the reserve value 0, while both buyers

get 0. More formally, the seller’s payoff function is

max{by, by} if ag < max{by, by}
US(@, as, bl> b?) =
0 if ag > max{b, b}
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and buyer ¢’s payoff is

’U(@) — bz if bz > b—i and bz > ag

ui(0,as,b1,by) = 2[v(0) —b;] if b =b_; and b; > ag

1
2
0 otherwise.

The Game with Disclosure: Let M be the set of messages, which we assume is a Polish
space. Before the base game is played, the seller chooses an information structure A to publicly
disclose information to the buyers.!” Together the information structure A and the base game
G define a Bayesian game (G, \). Every message m from the information structure A induces
a posterior belief u,, = A(:j/m) € A(O) for the buyers. The buyers ¢ = 1,2 choose their
respective bids f;(m), while the seller chooses an ask price ag(6,m). We restrict attention to
Bayesian Nash equilibria where the seller plays her weakly dominant strategy as(6,m) = 6,
and buyers play pure strategies. As we show in Lemma 6, such equilibria exist in (G, \)
for every A. These equilibria also give rise to the familiar fixed-point characterization of

equilibrium price: buyers’ bids satisfy

mac {51 (m), fa(m)} = By, [0(8)18 < max {1(m), Ba(m)}].

The trading game above differs from the Sender-Receiver setting in Section 2 in two ways:
first, the Sender in the current setting publicly discloses information to multiple Receivers;
second, in addition to the Receivers, the Sender also chooses an action (ask price) after
observing the realization of the information structure. Nevertheless, the notion of stable
outcome distribution extends to the current setting. In particular, the credibility notion is
based on the same idea that the Sender cannot profitably deviate to a different information
structure without changing the message distribution. The Receiver incentive compatible (R~
IC) condition, meanwhile, is replaced by a new IC condition that asks both the Sender and
Receivers to play according to a Bayesian Nash equilibrium in (G, A). As mentioned above, in
the market for lemons we will focus on a special class of Bayesian Nash equilibria in the game
(G, Ay where the seller plays her weakly dominant strateqy ag(6, m) = 6, and the buyers do not
mix. We will call such profiles (A, o) WD-IC to distinguish from the weaker IC requirement.
The formal discussion of our credibility notion in this multiple-Receiver setting is notationally
cumbersome, and is deferred to Appendix B.7.

Next we state our result, discuss its implications, and provide intuition for its proof. As

Tn our setting, \ determines only the buyers’ information structure, and the seller is perfectly informed
about 6. That is, the seller cannot prevent herself from learning the true quality of the car. This differs
from Kartik and Zhong (2019), who fully characterize payoffs in the market for lemons under all possible
information structures.
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a benchmark, fix an arbitrary message my € M, and let \g = py X d,,, be a null information
structure. Let Ry denote the supremum of the seller’s payoffs among profiles (Ao, o) that are
WD-IC, so R, represents the highest equilibrium payoff the seller can achieve when providing

no information.

Proposition 6. Under every credible and WD-IC profile, the seller’s payoff is no more than
Ry.

Proposition 6 implies that any information that can be credibly disclosed is not going
to improve the seller’s payoff compared to the no-information benchmark. This is in sharp
contrast to the full-commitment case, where the seller would like to fully reveal the car’s
quality, and all car types 6 are sold at v(#), which would allow the seller to capture all surplus
from trade.

Let us describe the intuition behind the proof for Proposition 6.!® For each message m
from the seller’s information structure A, let ©(m) denote the support of the buyer’s posterior
belief after observing m. A key step in proving Proposition 6 is to show that there exists a
common trading threshold 7 such that for each message m, a car of quality § € ©(m) is traded
if and only if # < 7. To see why, suppose towards a contradiction that the trading threshold
in message m is higher than the threshold in another message m’. We show in the proof
that the seller would then have a profitable deviation by swapping some of the cars slightly
below the higher threshold in message m with an equal amount of cars from m’ that are of
worse quality.' Because this deviation does not change the seller’s message distribution, it is
also undetectable. Therefore, credibility demands a common threshold 7 that applies across
messages. Given this common threshold 7, we then apply Tarski’s fixed-point theorem to show
that when no information is disclosed, there is an equilibrium that features a higher trading
threshold 7" > 7. Since a higher threshold means more cars are being traded, which in turn
increases the seller’s payoff, the seller’s payoff under every stable outcome is therefore weakly

worse than her payoff from a no-information outcome, and this proves our result.

18While the message of Proposition 6 is reminiscent of Proposition 2, it requires a different proof since the
seller has a private action, so Theorem 1 does not apply. Instead of working with the outcome distribution
m € A(O x A), here we apply the cyclical monotonicity characterization directly to the seller’s information
structure A € A(O© x M) by invoking an optimal transport result from Beiglbock, Goldstern, Maresch, and
Schachermayer (2009).

19This deviation is profitable because it allows the seller to replace the higher-quality cars traded in m with
the lower-quality, untraded cars in m’. After this swapping, the lower-quality cars are now sold at the price
for the higher-quality cars in m, while the higher-quality cars are now retained by the seller in m/.
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4 Discussion: Receiver Mixing

While our paper focuses on the Receiver playing pure strategies, the notion of credible and
R-IC profiles can be extended to allow for Receiver mixing. Suppose the message space M
is a Polish space that contains A(A) as a subset. A profile (), o) consisting of the Sender’s
information structure A € A(© x M) and the Receiver strategy o : M — A(A) is (mixed-
strategy) credible if

A € argmax / as(0,a(m)) dN(6,m),
xeD(n) Jexm

and (mixed-strategy) R-1C if

0 € argmax / ur(0,0'(m)) dX(6,m),
o' :M—A(A) Joxm

where g : © X A(A) — R and dg : © x A(A) — R are extensions of ug and ug to mixed

strategies, respectively.

As is illustrated in the following example, allowing mixed strategies can sometimes enlarge
the set of payoffs achievable through credible persuasion.?’ This is based on similar ideas that
appeared in Chakraborty and Harbaugh (2010) and Lipnowski and Ravid (2020): by mixing
actions that the Sender finds unappealing with those that she finds desirable, the Receiver

can reduce the scope of the Sender’s profitable deviations.

Example 2. Suppose © = {01,0,} with equal priors, and A = {a1,as,a3}. Consider the

payoff matrices in Table 4. In this example, az is the most desirable action for the Sender. We

ug a1 a2 a3 UR a1 a2 as
0, 1 0 4 0, 1 0 -1
0, 0 1 2 0, 0 1 1

Table 4: Sender and Receiver’s payoffs

will show that without Receiver mixing, the Sender can never induce the Receiver to play as
through credible persuasion; however, with Receiver mixing, the Sender can achieve a higher
payoff by persuading the Receiver to take az with positive probability.

First, we show that without mizing, the Receiver will never play az. In particular, we arque
that any stable outcome distribution © must satisfy 7 (asz) = 0. Suppose by contradiction
that 7% (a3) > 0. Since ag is weakly dominated by as, the Receiver will only play as under
the point mass belief on 05. It follows that 7*(0]az) = 1, so w*(61,a3) = 0. Therefore, either

20We thank a referee for suggesting this example.
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7(601,a1) > 0 or (b1, a2) > 0. Howewver, recall that (02, as) is in the support of T and

uS(ela al) + u5(927 a3) < us(ela CL3) + u5(927 a1)7 and

US(Ql, CLQ) + US(QQ, CL3) < us(el, CL3> + US(QQ’ az).

So both cases violate ug-cyclical monotonicity. This proves that only a; and as can be induced
in any stable outcome distribution. In fact, the best the Sender can do with credible persuasion
is to fully reveal the states, which gives the Sender a payoff of 1.

Next we show that the Sender can achieve a strictly higher payoff with Receiver mixing.
Consider the profile where the Sender fully reveals the state (A(61,my1) = X(#2,ms2) = 1), and
the Receiver plays o(my) = 84, and o(ms) = 204, + 304,, with & denoting the Dirac measure.
This profile is clearly R-1C. Moreover, without changing the distribution of messages, the only
deviation the Sender has is pairwise-swapping probability mass from (01, my) and (65, ms) to

be placed on (61, m2) and (05,my). This is not profitable because

1 1 1 1
ts(01,04,) + s (6, 55@ + 56@3) =1+1.5>2=1ug(b, 55@ + §5a3) + tg(02, dq, ).

Therefore, this strategy profile is (mized-strategy) credible and R-IC. Moreover, the Sender
achieves a strictly higher payoff of 1.25 from this mixed strategy profile than any pure-strateqy
credible and R-1C profile.

Despite the gap between pure and mixed strategies illustrated by the example above, some
of our results can be extended to cover Receiver mixing. In Appendix B.6, we provide a variant
of Theorem 1 (Theorem 1*) for the case when © and A are both compact Polish spaces. If
we view an outcome distribution 7 € A(O© x A(A)) as direct recommendations for mixed
strategies, Theorem 1* then characterizes credibility as ug-cyclical monotonicity on the space
O x A(A).

As a more specific example, when the Receiver’s action is binary, Proposition 2 holds even
when allowing for Receiver mixing. In particular, Proposition 2* in Appendix B.6 extends
Proposition 2 to the case when © and A are both compact subsets of R. When the Receiver’s
action is binary, the set of mixed strategies can be identified with the interval [0, 1], and the
extended payoff functions g and g preserve the super(sub-)modularity of ugs and ug. So
as a corollary of Proposition 2*, no information can be credibly transmitted in this case, and
focusing on pure strategies in Proposition 2 is without loss of generality when the Receiver’s

action is binary.
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5 Conclusion

This paper offers a new notion of credibility for persuasion problems. We model a Sender
who can commit to an information structure only up to the details that are observable to the
Receiver. The Receiver does not observe the chosen information structure but observes the
distribution of messages. This leads to a model of partial commitment where the Sender can
undetectably deviate to information structures that induce the same distribution of messages.
Our framework characterizes when, given the Receiver’s best response, the Sender has no
profitable deviation.

We show that this consideration eliminates the prospects for credible persuasion in settings
with adverse selection. In some other settings, we show that the requirement is compatible
with the Sender still benefiting from persuasion. More generally, we show that our require-
ment translates to a cyclical monotonicity condition on the induced distribution of states and
actions.

Our work also speaks to why certain industries (such as education) can effectively disclose
information by utilizing their own rating systems, while some other industries (such as car
dealerships) must resort to other means to address asymmetric information, such as third-
party certification or warranties. Our results provide a rationale: in industries that exhibit
adverse selection, the informed party cannot credibly disclose information through its own
ratings even if it wishes to do so.

The notion of credibility we consider in this paper is motivated by the observability of
the Sender’s message distribution. In some settings, the Receiver may observe more than the
distribution of messages; for example, she may observe some further details of the information
structure, such as how some states of the world map into messages. In other settings, the
Receiver may observe less; e.g., she may see the average grade, but not its distribution. To
capture these various cases, one would then formulate the problem of “detectable” deviations
differently. We view it to be an interesting direction for future research to understand how

different notions of detectability map into different conditions on the outcome distribution.
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A Appendix

A.1 Proof of Theorem 1

The following lemma, which will play a key role in the proof of Theorem 1, is a finite version
of Theorem 5.10 of Villani (2008). Below we present a direct proof of the lemma to better

illustrate the intuition behind Theorem 1.
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Lemma 2. Suppose both X and Y are finite sets, and u : X XY — R is a real function. Let
we AX) and v € A(Y) be two probability measure on X and Y respectively, and II(p,v) be
the set of joint probability measure on X XY such that the marginals on X and Y are p and

v. The following two statements are equivalent:
1. 7 € arg max, <y, Zx’y m(x,y)u(x,y);
2. m* is u-cyclically monotone. That is, for any n and (x1,y1), ..., (Tn, Yn) € supp(m*),

n

Z u(w;, yi) > Z u(;, Yis1)

i=1 =1

where Ypi1 = Y.

Proof. (1 = 2) To see the necessity of u-cyclical monotonicity, suppose by contraposition that
7* is not ug-cyclically monotone, which implies that there exists a sequence (x1,y1), ..., (Tn, Yn) €

supp(7*) such that

n

Z u(z;, y;) < Z w(Ti, Y1),

i=1 i=1

where y,41 = y1. Take 0 < & < Tmin;_y_, 7 (27, 9;),%" and define

T =r"+¢ Z [5(%7%“) — 5(%7%)] ,
i=1
where 0, denotes the Dirac measure on (x,y). Note that 7° € II(;, v) and satisfies

> ule,y) 7°(z,y)

$7y
n n

—Z “(,y) +e)_ulwiyin) = Y uls )]
i=1 =1
>Z ,y),

which implies 7* ¢ arg max cp,,) >, , T(@, y)u(z, y).
(1 <= 2) First note that 7* being wu-cyclically monotone is equivalent to: for any n and

(X1, Y1) vy (T, Yn) € supp(7*), and for any permutation s : {1,...,n} — {1, ...,n},

=1

21The scaling factor % is added to ensure that 7° is a positive measure, in case the same pair (x,y) appears
multiple times in the sequence.
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This is because any permutation can be written as the composition of disjoint cycles.
We now prove the sufficiency of u-cyclical monotonicity by contraposition. Suppose there
exists " € II(p, v) such that

Y @ yulz,y) > D 7 (@ yu(z, y). (3)

m7y

We will show that there exists a sequence (1,41), ..., (Tn, yn) € supp(m*) and a permutation
s:{1l,..n} = {1,...,n}, such that

n

n
Z w(i, Yu(iy) > Z u(;, yi)-
i=1

i=1
The argument proceeds in three steps.

Step 1: Approximate m* and 7' with 7 and 7', respectively, while preserving inequality (3):
both @* and T are joint distributions that share the same rational marginals; in addition, 7*
shares the same support as 7.

Choose g9 > 0 so that

ZW*({E,y)U(.Z’,y) < Zﬂl(x,y)u(x,y) — €0

z?y

By continuity, there exists d; > 0 such that for all |7 — 7*| < §; we have
> wla,y)ulz,y) <D 7@, y)u(z,y) — eo/2 (4)
z,y z,y

By Lemma 10, there exists d2 > 0 such that for all | — | < d and [P — v| < &9, there exists
€ (i, ) with
Z?T(ZL‘,y)U(ZL‘,y) > Zﬁl(x,y)u(x,y) - 50/2' (5)

Y Y
Let 03 = min, , {7*(z,y) : 7*(x,y) > 0} denote the smallest probability weight among the the
support of 7*.

Now let 6 = min{d;, ‘Xfﬁ, 03} and consider a rational joint distribution 7* € QX*¥ N
A(X x Y) such that |7* — 7*| < d. Note that supp(7*) = supp(7*). By inequality (4),

D w (@ yule,y) <D w (@, y)ulz, y) — /2.

x?y

Furthermore, the marginals of 7*, p = 7% and ¢ = 7§, are also rational and satisfy [p—pu| < Jy
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and |q — v| < 2. By inequality (5) there exists 7’ € II(p, ¢) such that

Z 7 (z,y)u(z,y) > Z 7' (z,y)u(z,y) —e0/2,

x’y I?y

SO
S #H (@ yulz,y) > Y 7 (@, y)ulz,y). (6)
Y Y

Step 2: Normalize and transform the above two joint distributions with the same rational

marginals, ™™ and 7', into doubly stochastic matrices. Through the Birkhoff-von Neumann

theorem, express inequality (6) in terms of permutation matrices.

Let N be an integer such that Np(z) and Nq(y) are integers for all z € X and y € Y.
Let S : X — 2{L--N} be a partition of {1,..., N} such that |S(z)| = Np(x) for each z € X;
similarly, let 7 : Y — 2{b-»N} be a partition of {1,..., N} such that |T'(y)| = Nq(y) for each
yeY. Foreachi=1,... N/ let Z; ={z:1€ S(x )} denote the x € X indexing the partition
that contains ¢; similarly, for each column j let g; = {y : j € T(y)} denote the y € Y indexing
the partition that contains j.

Consider the matrix [B};]1<ij<n defined by
PO Y )

i — = forall 1 <i,5 < N.
7 Np(Z:)q(7;)

And the matrix [B].

”] 1<ij<n defined by

o )

i — Y fOI'aHlSZ,]SN
7 Np(&:)q(7y)

Notice that the matrix B* is doubly stochastic: for any ¢ we have

. T (Z,y) _p(@) _
%= 3 (S 1) = o =

yey

Similarly, we can show that ), Bf; = 1 for every j. And following similar arguments, the
matrix B’ is also doubly stochastic.
Note that
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and similarly,

Z B -u(7,9;) = N Z 7 (z,y) u(z, y).
ivj T,y

Now since

S @y ulz,y) > > 7 (2,y) ulw,y),

Z‘?y

we have

ZB;J" w(Z;, ;) >ZB w(Zi, j)-
Y]

Let P denote the set of N x N permutation matrices. By the Birkhoff-von Neumann theorem,

both B* and B’ are in the convex hull of P. It follows that there exist permutation matrices

P* and P’ such that
Z ‘T’LJ y] > Z xl? y] (7)

and in addition, P; = 1 implies that the corresponding entry in B* satisfies B;; > 0.

Step 3: Convert inequality (7) into a cyclical deviation.
Note that the permutation matrix P* is equivalent to a mapping ¢ : {1,.... N} — {1,..., N}
such that P = 1 if and only if j = #(i). So

Z Izay] = Zu(fizagt(z))

In particular, every element of {(Z;, Ju;)}i-, is in the support of @*, since Pj; = 1 implies

B}; > 0, which further implies 7*(%, §;(;)) > 0. Since 7* and 7* share the same support, every
element of {(Z;, §:(;)) }i-; is in the support of 7* as well.

Let t' : {1,...., N} — {1,..., N} denote the permutation mapping induced by the matrix

P/
Z : ZL"MJ] Zu(fidjt'(i))-

z]?
%

It follows that inequality (7) can be re-written as

> u@i ge) > Y uld i) (8)

% 7

Since t and t' are both permutations, there exists a permutation s : {1,...,N} — {1,..., N}
such that s(¢(7)) = /(7). Consider the sequence {(z;,v;)}Y, defined by

i =1; and y; = gy fori=1,... N
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Then (8) becomes

N N
Z w(wi, y;) < Z u(i, Ys(iy)
i=1 i=1

where (x;,y;) € supp(n*) for each 1 <4 < N, which violates u-cyclical monotonicity. O

Proof of Theorem 1. For the “if” direction, suppose 7 is ug-obedient, ug-cyclically monotone,
and satisfies mg = po. The proof is by construction.

Since mg = po, we can construct an information structure (M, \*) by setting M = A and
A = m; furthermore, let o* be the identity map from M to A. It is straightforward to see that
the profile (A*, 0*) induces the outcome distribution 7. We first show that (A\*,o*) is R-IC.

Since 7 is ur-obedient, we have that for each a € A,

a€ argmaXZuR(Q,a’) 7(0,a).
a’ Py

Since ¢* is an identity map, it follows that for each m € M,
o*(m) € arg maxz ugr(0,d’) ©(0,0"(m)).
a’ o

Furthermore, since A* = m and ¢* is injective, we have \*(6,m) = 7(6,0*(m)) for all 6 € ©
and m € M. So

o* € arg max Z ur(f,0(m)) \*(6,m),
o:M—A OxM

which means o* is a best response to \*.
It remains to show that the Sender does not benefit from choosing any other informa-
tion structure in D(A*). Observe that since 7 is ug—cyclically monotone, every sequence

(01,a1),...,(0n,ay,) in supp(m) where a,+1 = a; satisfies

Z us(0i, a;) > Z us(0;, aitr)-
i=1 i=1

Since \* = 7 and ¢* is the identity mapping, this further implies
Z ug(0;, 0" (m;)) > Z us(0i, 0" (miy1));
i=1 i=1

for every sequence (61,m1), ..., (0n,my,) € supp(X*) with m,; = my. In addition, \j = po
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and A}, = A}, by construction. By Lemma 2, \* satisfies

A" € arg max Z us(0,0(m)) A(6,m)
AeD(N)  Sins

which means \* is Sender optimal conditional on its message distribution.

For the “only if” direction, suppose 7 is stable and thus induced by a credible and R-1C
profile (A\*,0*). Since o* best responds to the messages from \*, the ug-obedience of 7 follows
from Bergemann and Morris (2016).

It remains to show that 7 is ug-cyclical monotone. Suppose by contradiction that 7 is
not ug-cyclically monotone, which implies that there exists a sequence (0, ay), ..., (0n,a,) €

supp(m) such that
Z us(0;, a;) < Z us(0;, ait1),
i=1 i=1

where a, 1 = ay. Since 7 is induced by (A\*,0*), for each i = 1,...,n there exists m; such that
m; € ¥ !(a;) and (6;, m;) € supp(\*), so we have a sequence (61, m;), ..., (6,,m,) € supp(\*)
that satisfies

Zus((‘)iﬂ*(mi)) < ZUS<‘91'70*(mi+1))7 (9)
i=1 i=1
where m,, 1 = my. Define v(0, m) = ug(0,0*(m)). Since (A\*,0*) is credible, we have

At e argmax Z (0, m)NO, m).
XDV Sy

Lemma 2 implies that \* is v-cyclically monotone. Since (61,m1), ..., (6., my) is in supp(A*),

the v-cyclical monotonicity of A* implies

Zus O;, 0" (m;)) Zus i, 0" (mis1))

where m,, 1 = my, which is a contradiction to (9). So 7 must be ug-cyclically monotone.
O
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A.2 Proof of Proposition 1

The Sender-optimal stable outcome distribution is the solution to the following problem:

WEIAI%%)iA) GZ 7T(07 a)uS(ea G)

s.t. ZW(GM)UR(G, a) > Zﬂ(&\a)uR(H, a') for all a € supp(ma) and o' € A,
0 0

7 is ug-cyclically monotone,

TTe = Ho-

We first argue that the feasible region in the optimization program above is compact, so
there exists a Sender-optimal stable outcome distribution. The obedience constraints are weak
inequalities so they define a compact set of outcome distributions. It suffices to establish the
compactness of the set of ug-cyclically monotone outcome distributions, denoted by II?¢ =
{m € A(© x A) : 7 is ug-cyclically monotone}.

Let O = {supp(n) : 7 € [I?°} denote the set of the supports of the distributions in I1%°.
For each such support O € O, let IIp = {7 € A(© x A) : supp(wr) C O} denote the set
of outcome distributions whose support is contained within O. Note that since reducing the
support of the outcome distribution relaxes the ug-cyclical monotonicity constraint, every
distribution in the set Ilp is ug-cyclically monotone, so we have [1%¢ = Upepllp. In addition,
for each O € O, the set Il is closed since it is defined by equality constraints: IIp = {7 €
AO x A):m(B,a) =0 Y(0,a) ¢ O}. The set [IY = Upepllp is a finite union of closed
and bounded sets, and is therefore compact, so there exists a Sender-optimal stable outcome
distribution.

Next, we show that there exists a Sender-optimal credible and R-IC profile that does not
involve more than min{|©|, |A|} messages. Let 7* denote a Sender-optimal stable outcome
distribution.

To establish the |O] bound, let v* = Y 7%(a) ) ,7*(0la)us(f,a) denote the Sender’s

value from 7%, and A* = supp(n’) denote the support of 7*’s action distribution. Consider

aeA*},

where 7*(-|a) € A(©) and ) ,ug(d,a)7*(fla) € R denote the posterior belief and Sender’s

value conditioning on a, respectively. We will use (jq,v,) to denote an element of £.

the following set

&= {(W*(-\a),ZuS(Q,a)W*(ﬂ&)) e RI°!

Recall that py € A(O) is the prior distribution over states. Clearly (po,v*) € conv(E) C
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RI®l. We will show that (u,v*) can be represented as a convex combination of at most
|©] number of points in £. To this end, we argue that (up,v*) must be a boundary point
of conv(€). Suppose not, then there exists p € A(A*) and {(ia,va)}acar € € such that
Y weax(Hasva)p(a) = (po,0) where © > v*. Let @ € A(© x A) be the outcome distribution
induced by p: that is,
X p(a)m*(fla) for all a € A* and 6 € O,
7(0,a) = .

otherwise.

Clearly 7 satisfies obedience. It also satisfies cyclical monotonicity because the support of
7 is a subset of the support of 7*, and smaller support means there are fewer inequalities
to check in the cyclical monotonicity condition. Moreover, 7 yields a strictly higher value
to the Sender, which contradicts 7* being the Sender-optimal stable outcome distribution.
Therefore, (o, v*) is on the boundary of conv(£).

By the supporting hyperplane theorem, there exists a supporting hyperplane of conv(&)
containing (uo,v*); that is, there exists a vector r € RI®l and scalar w € R such that r -
(o, v*) = w and r - (u,v) > w for all (u,v) € conv(E). In particular, r - (p,,v,) > w for all
a € A*. Recall that (po,v*) = Y ,ca- ma(a)(fta, ve). Since 7% has full support on A*, this
implies 7+ (ftq,v,) = w for all a € A*, so all points in £ lie on the same hyperplane, which
has dimension |©] — 1. By Carathéodory’s Theorem, (i, v*) can be represented as a convex
combination of at most |©| number of points in £ according to some mixture probabilities
pE A(AY).

Let @ be the outcome distribution induced by p (in particular it is obtained from the
same construction as that for 7 above but with p replacing p). By construction, [supp(74)| <
min{|06|, |A|}, and the Sender’s value from p is also v*. In addition, 7 clearly satisfies obedi-
ence; it also satisfies cyclical monotonicity because the support of 7 is a subset of 7*, which
relaxes the cyclical monotonicity constraint. Therefore 7 is a Sender-optimal stable outcome
distribution. Now by using 7 as a “direct recommendation” information structure, we can de-
rive a Sender-optimal credible and R-IC profile that uses no more than min{|©|, | A|} messages,

following the same construction outlined in the “if” direction of the proof of Theorem 1.

A.3 Proof of Lemma 1

In light of Remark 1, we shall prove Lemma 1 without assuming that the order on either ©
or A is antisymmetric. Suppose (0, =) and (A, =) are finite ordered sets, and =1, > are
weak orders (complete and transitive). The notions of supermodularity and comonotonicity

are extended naturally with weak orders »=; and >, replacing the total orders on © and A.
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In particular, we say a function u : © x A — R is supermodular if for any § > ¢ and

a > a' we have
w®,a) +u(f,a)>u(d,d)+u(@, a);

the function is strictly supermodular if in additional for any € = ¢’ and a > d’,
uw@,a)+u(f,a)>u(dd)+u(@, a).

An outcome distribution 7 is comonotone if for any (0, a), (0',a’) € supp(w), 0 = ¢ implies
a = a'. We shall prove the following result, which is a restatement of Lemma 1 but based on

the weak orders =; and >».

Lemma 1%. If ug is supermodular, then every comonotone outcome distribution is ug-
cyclically monotone. Furthermore, if ug is strictly supermodular, then every wug-cyclically

monotone outcome distribution is also comonotone.
We begin the proof by establishing the following lemma.

Lemma 3. Let ¢t : {1,...,n} — {1,...,n} be a bijection. Suppose t is not the identity
mapping, then there exists k* such that t(k*) > k* and t(t(k*)) < t(k*).

Proof. Define K := {k € {1,...,n} : t(k) # k}. Since ¢ is not the identity mapping, K is
nonempty. Since t is a bijection, t(k) # k if and only if ¢(¢(k)) # t(k), so K is t-invariant.
Let k* = t !(max K) € K, then k* < max K = t(k*) and t(k*) = max K > t(maxK) =
t(t(k*)). O

Proof of Lemma 1*. First, we show that comonotonicity implies ug-cyclical monotonicity when
ug is supermodular. Suppose an outcome distribution 7 € A(© x A) is comonotone, then
the product order of =; and >, is also a weak order on supp(w). Take any sequence
(01,a1),...,(0n,a,) € supp(m) and assume without loss of generality that (6;,a;) is non-
decreasing in ¢ € {1,...,n} with respect to the product order. We will show that for any
permutation ¢ : {1,...,n} — {1,...,n},

ug(01,a1) + ... A ug(On, an) > ug(01, ay1)) + ... 4 us(On, arny),

which then proves the statement. In particular, for each permutation ¢, let v(t) = ug(61, a;1y)+
...+ us(0n, ayny) denote the value obtained from summing ug according to the state-action
pairings in ¢ and let / denote the identity map. We show that v(I) > v(t) for every permutation
t.
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To this end, take any permutation ¢ that is not an identity mapping, and let [(¢) denote
the number of fixed points of ¢ (which may be zero). By Lemma 3, there exists k£* such that
t(k*) > k* and t(t(k*)) < t(k*). The supermodularity of ug implies

s (Operys Qrer)) + Us (Ore, Graer))) = Us (O, Qrgery) + ws(Griry, Qrecer))- (10)

Define a new permutation # so that k is mapped to t(¢(k)) while ¢(k) is mapped to t(k), while

all other pairings remain unchanged. Formally,

t(k) for all k # k*, t(k*)
t(k) = Ct(t(k*)) if k=k*
t(k*) if k= t(k*)

By (10), we have
us (01, ag(l)) + ... +us(On, ag(n)) > ug(br, ayny) + - - - 4 us(On; arny),

so we have constructed another permutation £ with v(f) > v(t) and I(#) = I(t) + 1. Each time
we iterate the process above, v(-) weakly increases while the number of fixed points increases
by one. Since n < oo, the iteration terminates at the identity map I, so v(I) > v(t) for every

permutation ¢.

Next, suppose ug is strictly supermodular. We want to show that ug-cyclical monotonicity
implies comonotonicity. We prove this statement by contraposition: suppose that an outcome
distribution 7 is not comonotone, we will show that 7 is not ug-cyclically monotone. Since 7
is not comonotone, there exists (0, a), (¢',a’) € supp(w) such that § < 0, a > a’. Since ug is

strictly supermodular, we have
ug(0,a) +ug(0,a") < us(0,a’) +us(f',a). (11)

Consider a cycle of length 2 where (01,a;) = (0,a) and (04, as) = (¢',a’), then inequality (11)

above implies that 7 is not ug-cyclically monotone. [

A.4 Proof of Proposition 2

Let m be a stable outcome distribution, and suppose by contradiction that there exist two
distinct actions a1, as € supp(ma), say a3 < az. Let Iy = {6 € O|x(0,a1) > 0} and I, = {0 €
O©|m(0,az) > 0} be the states associated with a; and as in the support of 7, respectively. By

37



Theorem 1, since 7 is stable, it must be ug-obedient, which implies

(0, a)

ma(ay)

(0, as)

mwa(az)

> ur(6,a1) — up(6, az)]

Oel

>0> Y [ur(0,a1) — ur(t, az)]

0'cly

(12)

Furthermore, since ug is strictly supermodular, 7 is also comonotone by Theorem 1 and
Lemma 1, so any 6 € [; and 0" € I, satisfies # < 6. Since up is submodular, we have
ur(0,a1) —ug(l,az) <ug(d,a1) —ur(d',as) for all § € I; and 0" € I5, which implies

Ieneaﬁ{ {UR<67 al) - UR(H, aQ)} < glelg {UR(6/7 al) - U’R(ela a2)}‘

So
7T((9, al)

> Tur(0,a1) — up(, as)]

oecly

ma(ar) S max {ur(0,a1) — ur(0,a2)}

< min {ug(#, a1) — ur(f',az)} (13)

T 0elr
< Z [UR(9/7 al) — UR(@’, a2)]71'7£j/(7aa22))

0'els

Combining (12) and (13), we have

(0, a;)

> ur(6,a1) — ugp(6, az)]

oel;

ma(a) - rgneaﬁg {uR(H, a) —ug(6, a2)} -0

and

T 9,’(1 i / /
7T(A(a22)) = glnelg {uR(Q ,a1) — uR(H 7a2)} -0

Z [UR(Q,, (11) — UR(QI, CLQ)]

0'cly
So ugr(0,a1) = ugr(h,as) for all 0 € I, U I,.
Since the argument above applies to any ay, as € supp(ma), we have that for all a;,a,d’ €

supp(7a),
ur(0,a;) —ugr(0,a) = ug(f,a;) —ur(6,a’) =0 VO € I,

so for all 2 and 6 € [;, we have
un(0,a) — un(0,a') =0 Va,d’ € supp(ra),

and therefore
ugr(f,a) —ug(f,a’) =0 Va,d € supp(ra) and 6 € ©.

However, this is a contradiction since by assumption, there exists no a,a’ € A such that a # d
and ug(0,a) = ur(f,a’) for all 6.
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Therefore supp(74) must be a singleton, denoted by a*. Then ug-obeidence implies a* €

argmax,c 4 >, Ho(8)u(f,a). So 7 is a no-information outcome.

A.5 Proof of Proposition 3

Proof of statement 1. For each a € A, let

P, = {:u € A(@)‘ Z /JJ(H)UR(Q, CL) > ZM(G)UR<07 a’/)vva/ 7é CL}
0 0
which denotes the set of beliefs such that a is the Receiver’s strict best response. We prove
our claim under the assumption that there exists a® € A such that pug € P, (i.e. a° is the
unique best response to pg). Later we will show that this assumption holds for generic priors.
When the Sender’s information structure is uninformative, the Receiver best responds to

the Sender’s messages by choosing a°. The Sender’s payoff is

vy = Z,uo(ﬁ)us(e,ao).
0co
We will show that there exists a stable outcome distribution that gives the Sender a higher
payoff than vy.
We consider the case where the Sender benefits from persuasion, so a° # a, otherwise the
Receiver is already choosing the Sender’s favorite action under the prior. For e sufficiently
small, consider the outcome distribution 7€ € A(© x A) defined by

(10(6) 0 +£0,a=a
7TE(9,CL) _ MO(H) —¢€ lf (9,&) = (fﬁ io)
£ if (0,a) = (0,a)

0 otherwise .

\

€

We will show that for € sufficiently small, 7¢ is stable and gives the Sender a higher payoff
than vy.

It can be easily seen that the support of 7° is comonotone. Since ug is supermodular, 7€ is
ug-cyclically monotone by Lemma 1. Next, we verify that for ¢ sufficiently small, 7° satisfies

ug-obedience at the two actions {@, a°}. For a°, note that since py € P,e, we have

ZMO(Q)U(Q, a®) > ZMO(Q)W(H, a’) for all ' € A,

USS) o€
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so for ¢ sufficiently small,

ZMO(Q)U(Q, a®) — eu(f Zuo —cu(f,d’) for all a’ € A.

0cO 0cO

which means 7° satisfies up-obedience at a°.
As @ € A°, there exists i € A(O) such that @ € argmax, >, i(0)ur(f,a). So for every
a #a,
Zu [ur(0,@) —ugr(h,a’)] >0

Since ug is supermodular, ug(0,a) — ur(0,a’) is weakly increasing in 0, so if a belief p' first

order stochastically dominates 7z, then
Z,u Nur(8,a) —u(d,a)] >Zu Jur(0,a@) —u(f,a’)] > 0 for all a’ # a.

In particular, the Dirac measure djz first order stochastically dominates 1z, so the inequality

above implies

up(0,a) — ugr(0,a’) > 0 for all a # a.
So @ € argmax, ur(f,a), and 7° is ug-obedient at action @.

Finally, we show that the Sender obtains higher payoff from 7° than vy. Note that since

by our assumption, ug(6,a’) < ug(0,@) for all a’ # @, we have

Zﬂ' (0,a)us (0, a) Zuo us(0,a°) + (uo(0) — €)us(0, a®) + cus(0, @)
040

> po(O)us(8, %) + (uo(0) — €)us(8, a®) + us (8, a°)
0£0

= Z,uo(g)us(e, a’) = v
0

Therefore, Sender receives a strictly higher payoff from 7¢ than vg. This completes the proof.

The rest of the proof shows that U,c4 P, contains an open, dense, and full measure set.
In particular, we show that A(©)/{U.ecaP,} is included in a negligible, closed, and nowhere
dense subset in A(O).

Define H, o = {1 € A(O)|>_,11(0)(ur(f,a) — ugr(,a’)) = 0} for any a # a’. Since by
Assumption 1, ug(,a) — ug(-,a’) # 0, which implies J,» = {u € RI®|>, u(0)(ur(d,a) —
ur(f,a’)) = 0} is a hyperplane in RI®l. Notice that H, o = Joo N A(O), which is the
intersection of a hyperplane with a simplex. Since the hyperplane includes 0 and A(©)

doesn’t, they have to either be parallel with no intersection, or their intersection is in a lower
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dimensional subspace, which is negligible, closed, and nowhere dense.

For any p1 € A(O)/{UaecaP,}, since the maximizer of ), 1(6)ur(d, a) is not unique, there
exists a,a’ such that ), p(0)(ur(f,a) — ur(f,a’)) = 0. So A(O)/{UsecaPa} C Ussy Ho
where the latter is a negligible, closed and nowhere dense subset of A(©).

]

Proof of statement 2. For any generic prior p° € UgeaP,, either u® ¢ P, or u° ¢ Pz We
consider the case p° ¢ P, and the other case can be shown symmetrically. Similarly to the

previous argument, for € sufficiently small, consider the outcome distribution 7 € A(© x A):

p

po(6) if 0 #6,a=a°
0)—¢e if (0,a)=(0,a°
I IZORER SCORICEY
€ if (0,a) = (0,a)
kO otherwise

As we have shown in the proof of statement 1, for e sufficiently small, 7€ is stable, and gives
the Sender a higher payoff than vy. Therefore, the Sender benefits from credible persuasion.
]

Proof of statement 3. Let IIr denote the set of fully revealing outcome distributions, which

is compact because it is a closed subset of A(© x A). Let

IT;. = arg max (0, a)us(0,a
= argmax 3 w(0,us(0.0)

be the subset of [1x that maximizes Sender’s payoff, which is also compact by Berge’s theorem
of maximum. Note that by definition, every fully-revealing outcome distribution is obedient.
We will show that there exists an outcome distribution 7* € II}, that is comonotone. This
implies that as long as the Sender benefits from one fully-revealing outcome distribution, she
must also benefit from 7*, which is a comonotone (and obedient) fully-revealing outcome
distribution. This will then complete our proof following Theorem 1 and Lemma 1.

To this end, let us choose

7" € arg max Z (0, a)ba.
0,a

melly

Suppose by contradiction that 7* is not comonotone, we construct another outcome dis-
tribution 7’ € II}, that satisfies >, 7'(8,a)0a > >, 7*(0,a)fa, which contradicts 7 €

arg maX ep: g, (0, a)0a.
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Since 7* is not comonotone, there exists a pair (6, a;), (62, as) in the support of 7* such
that 6; < 0y and a; > ag. Take ¢ = min{n*(61,a1),7*(02,a2)}, and construct the outcome
distribution 7" where:

o m(01,a1) =7"(01,a1) — e, W (02,a9) = 7 (02,a2) — €

o ©(01,a2) = 7*(bh,a9) + ¢, ©(0y,a1) = 1 (02,a1) + €

e 7(0,a) =w*(0,a) for all other (0, a)

We first argue that 7’ € II},. Let A*(f) = argmax,, ur(f,a) denote the Receiver’s best
response correspondence. Since ug(6,a) is supermodular, by Lemma 2.8.1 of Topkis (2011),
A*(0) is weakly increasing in 6 in the induced set order. That is, for any 6 > ', a € A*(6),
and o' € A*(#"), we have max{a,a'} € A*(f) and min{a,da’} € A*(#’). Since a; € A*(#;) and
az € A*(0,), we have a; € A*(0;) and ay € A*(61). Therefore, 7’ is also a fully revealing

outcome distribution. Moreover since ug is supermodular,

Z[ﬂ’(@, a) — (0, a)|us(0,a) = elus(01, as) + us(0s,a1) —us(01,a1) — us(f2,a2)] > 0,
6,a

so the Sender’s payoff from 7’ is weakly greater than from 7%, and therefore 7" € II3..
Next we argue that ),  7'(0,a)fa > >,  7(6,a)0a. To this end, note that

Z[W'(Q, a) — 7(0,a)l0a = €[01as + O2a1 — 0101 — Oaas]
0,a

:(92 — 91)(@1 — ag) > 0.

This contradicts 7* € arg max;cr; Y4, (0, a)0a. O

A.6 Proof of Proposition 4

From Theorem 1 of Mensch (2021), if both ug and ug are supermodular and |A| = 2, there
exists a KG optimal outcome distribution that is comonotone. Then by Theorem 1 and
Lemma 1, such an outcome distribution is stable. Moreover, if in addition ug is strictly
supermodular, any KG optimal outcome distribution is comonotone. So any KG optimal

outcome distribution is stable.

A.7 Proof of Proposition 5

We begin by establishing a lemma that will be useful for proving Proposition 5.

Lemma 4. Suppose the message space M is a finite subset of R, the information structure

A € A(O© x M) is comonotone, and the Receiver’s payoff function ug is strictly supermodular.
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Consider a Receiver strateqy o : M — A defined by

o(m) € arg maxz A0, m)ugr(f,a).

a€A

The outcome distribution m € A(© x A) induced by (A, o) is comonotone and ug-obedient.

Proof. The fact that 7 is ug-obedient follows from Bergemann and Morris (2016). We will
prove that 7 is comonotone. Suppose by contradiction that 7 is not comonotone, so there
exists (61, a1), (02, as) € supp(n), such that a; > as and 6; < 0. We will show that this leads
to a contradiction.

Let My = {m € M : X0;,m) > 0} and My = {m € M : A6fy,m) > 0}. Since
(01,a1), (02,as) € supp(n), there exists m; € M; and my € My such that o(m;) = a; and
o(msg) = ag. In additional, m; < msy because #; < 0y and A is comonotone; furthermore,
my # mgy because a(my) # o(ma), so my < ma.

Let © ={0 € ©: \(0,m;) >0} and Oy = {0 € © : \(A, m3) > 0}. Since o best responds

to each message, we have

)\(9, ml)
)\M(ml)

A, mg)

Mo (112) (14)

> [ur(0,a1) — up(9, as)]

>0> ) [ur(tl,a1) — ur(t', az)]
0€O, 0'€O9

Furthermore, since A is comonotone and m; < ma, for any # € ©1 and §' € O,, 6§ < ¢, which

implies max ©; < min ©,. Together with the supermodularity of ugr, we have

max {UR(Q ar) — ug(0, @2)} < ellflféiglfl2 {UR(9/7 ay) — ug(#, a2)}-

So

> [ur(6,a1) — ur(6, as)] ;\\E\f(:nnll) < max {ug(f, a1) — ur(0, az) }
0cO1
< eflréieﬂz {ur(0',a1) — up(?',az)} (15)

A0, mo)

/\M(mg)

< 3 [ 01) vt o)

0'cO2

Combining (14) and (15), we have

NG
96261 [up(f,a1) — ur(f,as)] /\5\4(211) = max {ur(0,a1) — ugr(6,a2)} =0
and
)\(Ql,mg)

Anr(ms) = i {ur(0',a1) — ugr(#',a2)} =0

> [ur(f,a1) — up(¥', ap)]

0'€O2
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so ur(f,a1) = ur(f,ay) for all 6 € ©; U O,.
But recall that 61,0, € ©; U ©5 and 6; < 65, and from the strict supermodularity of ug,

uR(Gl,al) — UR(Ql,ag) < uR(Hz,al) — UR(QQ,(IQ),

which leads to a contradiction. O]

Proof of Proposition 5. Let m be a Sender-optimal stable outcome distribution under prefer-
ences (ug,ug). By Theorem 1 and Lemma 1, 7 is comonotone.

Now under the more aligned preferences (ug, u’), suppose the Sender uses the information
structure A = 7w with message space M = supp(m4), and let o’ be the Receiver strategy that
best responds to each message from 7, with ties broken in favor of the Sender. By Lemma 4,
the outcome distribution 7" induced by the profile (7, ') is comonotone and u/,-obedient. By
Theorem 1 and Lemma 1, 7’ is a stable outcome distribution under preferences (ug, u’).

It remains to show that the Sender obtains a higher payoff from 7n’. For each belief
ne A(©),

a€A acA

a(p) € arg maxZu(Q)uR(Q,a) and a'(p) € arg maXZ/L(G)u’R(Q,a)
0 0

denote the Receiver’s best response to belief 1, with ties broken in favor of the Sender. Note

that since o’ breaks ties in favor of the Sender,

Exja) |us(0,7(0))| = Bagra [us(6,8/(x(a)) )] for all a € M. (16)
By contrast,
Er(la) [us(é’, a)} < Er(la) [us(ﬁ, a(m(-|a)) )] for all a € M (17)

since m may not be the result of a Sender-favoring tie-breaking strategy.
So

=FE., _EW(.M) :US<97U(CL))H

A :Ew<~|a> :“S
2 Ery | Entla) :US
> By | Brio [us(0.0)|
= E.lus(0,a)]
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where the first line above follows from the definition of 7/, the second line is the law of iterated
expectation, the third follows from (16), the fourth line follows from the preferences (ug, u’)
being more aligned than (ug,ug), the fifth follows from (17), and the last equality is again
the law of iterated expectation.
So the Sender obtains a higher payoff from 7’ than 7. Since 7’ is also stable under
preferences (ug, u’p), this completes our proof.
O

A.8 Proof of Proposition 6

For each buyer’s belief over quality, u € A(©), let 8, denote the smallest 6 in the support of
; in addition, let ¢, (z) = E,[v(6)|0 < x] denote the corresponding expected value to buyers
when the quality threshold is § < 2.2 Clearly, ¢,,(-) is weakly increasing and ¢, (1) = E,[v()].

Lemma 5. For every p € A(®), there exists a largest fized point 0, € (0,,1) such that
¢u(0) = 6. Moreover, for any 0 € (0;,,1], ¢,(0) < 0.

Proof. Since ¢,(0,) =v(0,) > 0,, ¢.(1) = E,[v(0)] < 1, and ¢,(-) is weakly increasing, from
Tarski’s fixed point theorem, there exists a largest fixed point 85 € (6,,,1) such that ¢, (67) =
0. To see the second statement, suppose there exists € (07, 1) such that ¢,(¢) > 0, again
from Tarski’s fixed point theorem, there exists a fixed point §" € (¢, 1), which contradicts ¢

being the largest fixed point. Il

Lemma 6. Let A € A(© x M) be an information structure, and for every m € M let
Um € A(O) denote the buyers’ posterior belief after observing message m. The following
strategy profile is a BNE in the game (G, \): ag(0,m) =0, f1(m) = Ba(m) = 0 .

Proof. For every message m, since ¢, (0 ) = 0 , each buyer’s expected payoff is 0. Any

deviation to a lower bid also gives a payoff of zero. From Lemma 5, for any 6 &€ (Hzm, 1],
Gun(8) < 0, so any deviation to a bid higher than ¢, would lead to a negative payoff.

Therefore no buyer has an incentive to deviate. 0

Lemma 7. Let (\*,0*) be a WD-IC profile. For each messagem, let p(m) = max{S;(m), 53(m)}
denote the equilibrium market price in the game (G, \*). Then ¢, (p(m)) = p(m) for each m €
M.

Proof. Suppose ¢, (p(m)) < p(m), then the winning buyer’s payoff is negative, and can
profitably deviate to bid 0. Now suppose ¢, (p(m)) > p(m), we show that at least one buyer

has an incentive to bid a higher price.

*For x less than @, we set ¢, (z) = v(8,,).
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If By(m) # B3(m), then the losing bidder can profitably deviate. Since ¢, () is weakly
increasing, there exists small enough e such that ¢, (p(m) +¢) > p(m) +e. So the losing
bidder can deviate to bidding p(m) + ¢ and receives a strictly positive payoft.

If 57(m) = B5(m) = b for some b, we show that both buyers have an incentive to deviate.
Let K = ¢,,,(b) — b > 0. Since ties are broken evenly, each buyer’s payoff is 3P, (6 < b)K.

m

By letting € < %, we have

K
¢um(b+5)—b—52¢#m(b)—b—5:K—€>E.

So if either of the bidders deviates to bidding b + ¢, he receives a payoff of P, (0 < b+
)b (b+e) —b—¢] > 3P, (0 <b)K, which is profitable. O

Lemma 8. If a profile (\*,0%) is credible and WD-IC, then there exists a set E C © x M
such that \*(E) =1, and for any (0,m), (0/,m’) € E,

max{6,p(m)} + max{#', p(m’)} > max{6, p(m’)} + max{#’, p(m)}.

Proof. Since (A*,0*) is WD-IC, trade only happens when the seller’s ask price a*(0,m) = 0
is higher than the prevailing market price p(m) = max{fs;(m), 85(m)}. The seller’s payoff

function can therefore be simplified as

US(97 U*(Q, m)) - u5<07 O‘*<9> m)a ﬁi(m)a ﬁ;(m)) = max{&,p(m)}.

Recall that credibility requires

A€ argmax/ug(ﬁ,a*(é’,m))d/\’(Q,m).
NED()

Let vg(0,m) = ug(6,0"(0,m)) = max{f,p(m)}. From Theorem 1 of Beiglbock et al. (2009),
A is vg-cyclically monotone. That is, there exists a set £ C © x M such that \*(F) = 1, and
for any sequence (i, my),_, € E,

> vs(Okmi) = vg(Ok, misa).

k=1 k=1

Suppose (0, m), (6/,m’) € E, then vg-cyclical monotonicity implies that

vg(0,m) +vg(8',m') > vs(8,m") +vs(6',m),
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which is
max{6,p(m)} + max{#', p(m’)} > max{6,p(m’)} + max{#’,p(m)}.
L]
In light of Lemma 8, for every credible profile (\*, 0*) we will focus only on pairs (#,m) € E.

We will use proj,,(E) = {m € M : (§,m) € E} to denote the projection of E onto the message

space.

Let p = inf{p(m)|m € proj,,(£)} be the infimum of trading prices across all messages.
For each message m, let ©(m) = {0 : (8, m) € E'} be the set of 6 that is matched with m.

Lemma 9. Let (\*,0%) be a credible and WD-IC profile. For every message m € proj,,(F)
such that p = p(1n) = max{5j(m), B3 (m)} > p, we have O(1n) N (p, c0) = ().

Proof. To prove the lemma, suppose by contradiction that there exists 0 € O(m)N(p,o0). By
the definition of p, there exists p’ withp < p’ < 0 such that p' = p(m/) for some m’ € proj,, (E).
Since in equilibrium p’ = E,, ,[v(0)|0 € ©(m') N [0,p]], there also exists §' € ©(m’) such that
¢’ < p'. Since (¢/,m'), (é, m) € E, by Lemma 8, we have

max{#’, p} + max{6, p'} < max{#',p'} + max{6, p}
Since 0’ < p’ by construction, we have
max{6', p} + max{0,p'} < p' + max{0,p} (18)

Note also that
P+ max{0,p} < p+0. (19)

The inequality above follows by considering two possibilities for max{é, p}: either 6 > P, in
which case p’ +max{0,p} = p'+6 < p+0; or § < p, in which case p’ +max{0,p} = p'+p < p+0
as well.

Combining (18) and (19), and noticing ¢’ < p’ < p and p’ < 0 yield
max{#, p} + max{f,p'} < p+ 6 = max{0',p} + max{0,p'}

which is a contradiction.
]

Proof of the Proposition 6. To prove our result, we first calculate the seller’s profit from an
arbitrary credible and WD-IC profile (A*, 0*). We then show that there exists another credible
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and WD-IC profile (\°,0%), where \° is a null information structure, that leads to weakly
higher profit for the seller.
Recall that seller’s payoff function can be written as ug(6,0*(6,m)) = max{6,p(m)}, so

her ex-ante profit is

/@ {0, plm)}aX'(0,m) = /M /0 max{0, p(m)} dA*(0]m)d\%, (m)

— /M [ /0 v p(m) dX*(8m) + /p (lm)é)dA*(9|m)] dXy(m)

1
— [ s i@ < st + [ oaxtom] axi
M p(m)
By Lemma 7, p(m) = Ex«@gm)[v(0)|0 < p(m)], so we can write the integral above as
1

[ [Bomlo@10 < o)y @ < o) + [

p(m)

- /M [ /0 p(m)v(e)dA*(mm)Jr /p :m)QdA*(t?Im)] Xy (m)

By Lemma 9, for every m € proj,,(E), if p(m) > p then ©(m) N (p,00) = (), so the seller’s

7 d)x*(ﬁ]m)] dAy(m)

profit from (A\*,0*) can be further simplified to

/M [/Opv(G)d)\*(9!m)+/pled/\*(e|m)] dN:p(m)

= /O By(&)d,uo(@)—i— / 0 dpio(6). (20)

Having calculated the seller’s profit from (A*, 0*), next we will construct another credible
and WD-IC profile (\°,6%) with a weakly higher profit, where )y is the null information
structure py X 0, -

From Lemma 9, for every m € proj,,(E),

G (P(M)) = By, [0(0)|0 < p(m)] = E,, [v(0)]0 < p] = ¢, (1);

in addition, from Lemma 7, ¢, (p(m)) = p(m) for every message m € proj,,;(E). Combining

these yields
D () = Opn (p(M)) = p(m) = p.

Taking expectation over all messages, we have ¢,,(p) > p. By Tarski’s fixed point theorem,
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there exists a largest p° € [p, 1) such that the ¢, (p°) = p°.

Using a similar argument as that in Lemma 6, the strategy profile ¢ where the seller plays
her weakly dominant strategy (6, mo) = 6, and buyers play (Y(mg) = 85(mg) = p° is a BNE
in the game (G, \?).

It remains to show that the seller’s profit from (A\°, %) is weakly higher than that from
(A*,0*). Under (A°, %) the seller’s profit is

0 1

/01 max{0, p°}dpuo () = /OP pdpo(0) + /po Od10(6)

Comparing (20) and (21), since p® > p and v(#) > 6 for all 0, it follows that

0

p 1 P 1
/ U(Q)dqur/ 9du02/ v(9)duo+/ Oduo.
0 p0 0 p

The seller’s profit under (\°, ¢%) is therefore weakly higher than that from (\*,o*).

B Online Appendix

B.1 Relationship to Rochet (1987)

The ug-cyclical monotonicity condition in our characterization closely resembles the cyclical
monotonicity condition for implementing transfers in Rochet (1987). The reader might wonder
why cyclical monotonicity arises in our setting despite the lack of transfers. The connection is
best summarized by the following three equivalent conditions from optimal transport theory
(see, for example, Theorem 5.10 of Villani (2008)).

Kantorovich Duality. Suppose X and Y are both finite sets, and u : X XY — R is a
real-valued function. Let v be a probability measure on X and v be a probability measure on
Y, and I(u,v) be the set of probability measures on X XY such that the marginals on X and
Y are p and v, respectively. Then for any m* € Il(u,v), the following three statements are

equivalent:
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1. ™ € arg max ey, ij m(x, y)u(z,y);
2. 7 is u-cyclically monotone. That is, for any n and (x1,y1), ..., (Tn, Yn) € supp(m*),

n n

Z u(zi, yi) > Z (4, Yiv1).

i=1 i=1
3. There exists ¢ : Y — R such that for any (x,y) € supp(n*) and any y € Y ,*

u(z,y) —v(y) = uz,y) —y).

Our Theorem 1 builds on the equivalence between 1 and 2 in the Kantorovich duality
theorem above to show the equivalence between credibility and ug-cyclical monotonicity.

Rochet (1987)’s classic result on implementation with transfers follows from the equivalence
between 2 and 3. To see this, consider a principal-agent problem where the agent’s private
type space is © with full-support prior pg, and the principal’s action space is A. The agent’s
payoff is u(f,a) — t, where t is the transfer she makes to the principal. Given an allocation
rule ¢ : © — A, let v,(6,0") = u(6,¢(#')) denote the payoff that a type-6 agent obtains from
the allocation intended for type . Let X =Y = © and p = v = pg in the Kantorovich
duality theorem above, and consider the distribution 7* € II(u, v) defined by

o) 00
0.0y =0

0 otherwise

By the equivalence of 2 and 3 in the Kantorovich duality theorem, 7* is v,-cyclically monotone
if and only if there exists ¢ : © — R such that for all 6,0" € ©, v (8, 8)—1(0) > v,(0,0")—(0).
That is,

u(0,9(0)) — () > u(0,q(0)) — ¥(¢"),

so the allocation rule ¢ can be implemented by the transfer rule ¢ : © — R. The v,-cyclical

monotonicity condition says that for every sequence 6y, ...,6,, € © with 0,,., = 6,

n n

> ulbi,q(6:) = > ulbi,q(0i1)).

i=1 =1

This is exactly the cyclical monotonicity condition in Rochet (1987).
When X = O is interpreted as the set of an agent’s true types and Y = O interpreted as

23This statement can also be equivalently written as: there exists ¢ : X — R and ¥ : Y — R, such that
o(x) +¢Y(y) > u(z,y) for all x and y, with equality for (z,y) in the support of 7*.

50



the set of reported types, the distribution 7* constructed in the previous paragraph can be
interpreted as the agent’s truthful reporting strategy. Based on this interpretation, Rahman
(2010) uses the duality between 1 and 3 to show that the incentive compatibility of truthful

reporting subject to quota constraints is equivalent to implementability with transfers.

B.2 Finite-Sample Approximation

As discussed in Section 2.1, we interpret our model as one where the Sender designs an in-
formation structure that assigns scores to a large population of realized 6’s; in particular, our
model abstracts away from sampling variation, so there is no uncertainty in the population’s
realized type distribution. In this section we explicitly allow sampling variation by consid-
ering a finite-sample model where the Sender observes N random i.i.d. draws from ©, and
assigns each realized 6 a message m € M, subject to certain message quotas—in particular,
these message quotas substitute for the Sender’s commitment to message distributions in the
continuum model. We will show that credible and R-IC profiles in our continuum model are
approximated by credible and R-IC profiles in the discrete model when the sample size is
large.

Consider a finite i.i.d sample of size N drawn from the type space © according to the
prior distribution py. The set of all possible empirical distributions over © in this N-sample

captures the sampling variations in the realized type distribution, and can be written as

FO={f/IN:feNL Y f0) = N},

0cO

The Sender assigns each realized 6 in the N-sample a message m € M, which leads to an

N-sample of messages. Let

Fy =L e S fm) = N}

meM

denote the set of N-sample empirical distributions over messages. Lastly, for a pair of state

and message distributions (u,v), let
XN(:Ua V) = {f/N : f € Nl@lxm/[l:z.f(ev) = NV()?Zf(vm) = N:u()}
[4 m

denote the set of N-sample empirical joint distributions over states and messages that have

marginals p and v. Notice that X (u,v) # 0 if and only if p € FJ and v € Fi}.2

24Notice that for any f € NI®IXIMI the sum of any row or column has to be integer, so XV (u,v) = 0 if
either u ¢ FY or v ¢ F}. On the other hand if y € F and v € F{j, a A\ € X™(u,v) can be constructed
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Let us now define the N-sample analogue of credible and R-IC profiles. We consider
a Sender who assigns a message m € M to each realized 6 € © subject to a message quota
vV € FIN. An N-sample profile is therefore a triple (v, o™, o), where ¢ : FY — A(Ox M)
is a Sender’s strategy that takes every realized empirical distribution over states u € F§ to
a joint distribution ¢ (u™¥) € XV (u,v"); meanwhile, 0¥ : M — A is a Receiver’s strategy
that assigns an action to each observed message.?’

The definitions of Sender credibility and Receiver incentive compatibility in the N-sample
setting mirror those in our continuum model. In particular, we say an N-sample profile
(N, ¢V, o) is credible if for each realized empirical distribution over ©, the Sender always
chooses an optimal assignment of messages subject to the message quotas specified in vV:

(N, oV, o) is credible if for every u € ]-"éV 7

(™) € argmax Z)\N(G,m)us(G,UN(m)).

)‘NEX(MNJJN) 9,’!’)’1,

We say the N-sample profile (vV, ¢V, o) is Receiver incentive compatible (R-IC) if oV best-
responds to the Sender’s strategy ¢ . In particular, let PV denote the probability distribution
over & induced by i.i.d. draws from the prior distribution pg € A(0), and let ¢~ (0, m|u”)
be the probability assigned to (f,m) in the joint distribution ¢* (1) chosen by the Sender.
The profile (vV, ¢, o) is R-IC if

o € arg max Z PN(/LN)Z(b(ﬁ,mmN)uR(Q,U'(m)).

""M—A
7 pNeFd

Proposition 7 below shows that credible and R-IC profiles in the continuum model are
approximated by credible and R-IC profiles in the N-sample model, provided N is sufficiently
large. Note that in the second statement in Proposition 7, we distinguish a strictly credible
profile (A*, 0*) in the continuum model as one where A* is the unique maximizer in Definition 1;

similarly, (A*, o) is strictly R-IC if ¢* is the unique maximizer in Definition 2.

Proposition 7. 1. Let (\*,0%) be a profile in the continuum model. If for every e > 0,
there exists a finite credible profile (v, ¢N,a™) for some sample size N, such that
VN =il <&, |[oN —o*| < e and P(|¢N (FL) —\*| <€) > 1—¢, then (\*,0*) is credible
and R-IC.

2. Suppose (N*,0%) is a strictly credible and strictly R-IC profile in the continuum model,

from the so-called Northwest corner rule.

25Note that our formulation of the Sender’s strategy assumes that the Sender conditions her strategy only
on the empirical distribution of the realized N samples, and ignores the identity of each individual sample
point.
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then for each € > 0 there exists a finite-sample credible and R-IC profile (v, ¢V, ™)
such that [V — Xy < e, |oV —o*| < e and P(|o™"(FY) — M| <¢e) >1—e.

The first statement in Proposition 7 is analogous to the upper-hemicontinuity of Nash
equilibrium correspondences: if a profile (\*,0*) in the continuous model can be arbitrarily
approximated by credible and R-IC profiles in the finite model, then profile (A*, c*) must itself
be credible and R-IC. Conversely, the second statement in Proposition 7 can be interpreted in
a way similar to the lower-hemicontinuity of strict Nash equilibria: if a profile (A\*,c*) in the
continuous model is strictly credible and strictly R-IC, then it can be arbitrarily approximated
by credible and R-IC profiles in the finite model.?6

B.2.1 Proof of Proposition 7

For p € A(©) and v € A(A), let A(u,v) ={X € A(O© x A) : A\g = p1, Aa = v} denote the set
of joint distributions on © x A that with marginals given by 1 and v. The following lemmas

will be useful in our proofs.

Lemma 10. The correspondence

B(p,v) = arg max Z A0, m)us(f,0(m))
XEA(p,v) 0.m

is upper hemi-continuous with respect to (u,v). Thus, the value function

V(p,v) = max A0, m)ug(f,0(m))

AEA(p) 4=

1S continuous.

Proof. The first statement follows directly from Theorem 1.50 of Santambrogio (2015). For any
sequence (Ag, ik, k) — (A, i, v) so that A\ € B(uyg, vx) for all k, we have A\ € B(u,v). Then
V(s v) =3 MO, m)us(0,0(m)) = limyo0 D 2, A0, m)us (0, 0(m)) = limgsoo V (g, i),

which proves the second statement. O

Lemma 11. Suppose u € F& and v € Fi), then the extreme points of A, v) are contained
in XN (p,v).

Proof. Consider the set YV (i, v) = {f € REM S #(6,) = Nv (1), 3, f(-;m) = Nu(-)}.
From Corollary 8.1.4 of Brualdi (2006), the extreme points of Y (u,v) are contained in
ZN(M7V) = {f € N‘9|X|M| : ZQ f(ea) = NV(')’me('7m) = NM()} Since A(M7V) =

26We conjecture that for generic payoffs, an outcome distribution induced by a credible and R-IC profile
can be approximated by their strict counterparts, but we have not been able to identify a proof.
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{(£: feYNuv)}and XN(u,v) = {L£ : f € Z¥(u,v)}, the extreme points of A(u,v) are
contained in X% (u, v). O

Lemma 12. Let XY be metric spaces and I' : X =Y be a correspondence. If ' is upper

hemi-continuous at xg € X, and I'(xg) = {yo} for some yo € Y, then I' is continuous at xy.

Proof. For any € > 0, let B(yo,e) C Y denote the e-ball centered at yo. We will show that
there exists 0 > 0 such that for all |z — x| < §, T'(z) N B(yo, &) # 0, which implies that I' is
lhc and therefore continuous.

Now since I'(z) = {yo} € B(yo,¢) and I' is uhc at zy, it follows that there exists 6 > 0
such that I'(x) C B(yo, ) for all |z — zo| < 0, so T'(z) N B(yo,e) # O for all |x — x| < §, which
completes the proof. O

Proof of Proposition 7 statement 1. First suppose (A*,0*) is not credible. Then there exists
N € A(po, Ayy) (recall pg is the prior distribution on ©) and &y > 0 such that

D N (O, m)us(8, 0 (m)) < Y N (0, m)us(0,0"(m)) — <

6,m

By continuity, there exists £, > 0 such that for all |\ — A*| < &1 we have
D A0, m)us(,0°(m)) < > N (0, m)us(6,0"(m)) — £0/2 (22)
0,m 0,m

By Lemma 10, there exists €5 > 0 such that for all |4 — po| < €2 and |v — A};| < €2, there
exists A\ € A(u,v) with

Z)\HmuS(Ga Z)\ (0, m)ug(6, 0 (m)) — o/2. (23)

Moreover, since the Receiver is choosing only pure strategies, there exists €3 such that for
any o where |0 — o*| < 3, 0 = o*.

Now let ¢ = min{ey, @Iiﬁ’ 3}, By assumption, there exists a finite-sample, credible and
R-IC profile (v, ¢V, 0V such that [V — \y,| < ¢, [0V — o] < e and P(|p" (FY) — | < ¢) >
1—e.

Under such a finite-sample profile, ¢ = ¢*, and there exists F € FJ, realized with
positive probability, such that \* = ¢™ (F}) satisfies |\* — \*| < min{ey, ot

Now since [\* — X*| < &1, by (22) we know that

Z/\* (0, m)ug (8, o* Zx 0, m)ug(h,o*(m)) — /2 (24)
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In addition, since |\* — \*| < Brcar e know FY = g satisfies |[FY — | < €2, and vV = X%,

satisfies [V — A%, | < &2, so by (23) there exists N € A(FY,vN) such that

> X0, mug(0,0%(m)) > > N(0,mus(0,0"(m)) — £0/2 (25)
6,m

6,m

Combining (24) and (25), we have

D X0, m)us(0, 0" (m)) > > A (0, m)us(0, 0" (m)),
0,m

6,m

Note that N € A(FY,vN), but by Lemma 11, we can replace N with an extreme point in
XN(FY,vN), and the above inequality still holds. That is, there exists N € XN (FY, V) such
that

Z)\ (0, m)us(f,0*(m Z)\*emus(90< )

Notice that A* and \ are both in XN (FJ, vV), which is a contradiction since by the credibility
of (W, ¢, o™)
Xo=¢N(FY) = argmax Y A0, m)us(0,0"(m)).

XeXN(FEWN) ‘g m

Second, suppose (A*,0*) violates R-IC. Then there exists ¢’ such that

Z)\*HmuR(ea Z)\ (0, m)ur(0,0"(m))

By continuity, there exist n > 0 and €4 > 0 such that for all X satisfying |\* — N| < &4, we

have

ZX@muR(GU Z)\ (0, m)ur(0,0*(m)) >n>0
0,m

6,m

Let d = maxg, ug(f,a) — ming, ur(f,a) denote the gap between the Receiver’s highest

and lowest payoffs. Let g5 < #7 and ¢ = min{es, e4,65}. By assumption, there exists a
credible and R-IC finite-sample profile (v, ¢V, oV) such that Pr(|¢" (F)) — | <e) > 1—¢,
and ¥ = o*. We will show that in the finite sample profile (v, ¢", o), the Receiver can
N = ¢* to o', which contradicts (v, ¢", o) being R-IC.

By choosing ¢* the Receiver obtains payoff

profitably deviate from o

S PYEY) Y 6 (0, m|FY ur(8, 0" (m))

N N
FYer)
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By contrast, the Receiver obtains

> PYEE)Y oM (0, m|ES yur(9,0'(m))

N N
FieF] 0,m

from choosing ¢’. Denote EN = {F] : |¢" (FY) — A\*| < §} so Pr(EY) > 1 —e. By switching

from o* to o/, the Receiver obtains an extra payoff of

Z PN(FY) Zqﬁ (0, m|F5 Y ur(0, 0" qu (0, m|F§ ur(8,0'(m))
Flery )
= > PYFY) Z¢N (0, m|F& )ug(8, 0 Z¢N (0, m|F& )ur(8,0'(m))
+ 3 PN qu (0, m|EY Yur(8, 0" Z¢ (0, m|ES ur(0,0'(m))
FY¢EN

Note that Y-, o™ (0, m|F& ) ur(0,0*(m)) = 3, &~ (0, m|FY )ur(,d’'(m)) > n for all F§ €
EN while forall Y ¢ EN, 57, o™ (0, m|FY ) ur(8, 0% (m)) =324, o™ (0, m|FE )ur(6, 0’ (m)) >
—d. Together they imply,

> PN(EY)

NerN
FgeFrg

>nPN(EN) —d(1 — PN(EN)).

Zcb (0, m|F& Jur(0, 0 Zcb (0, m|Fg Yur(9, o’ (m ))]

Since PNY(EYN) > 1 — ¢, we have

> PNFED)

Ne TN
FgeFrg

>(l—enp—ed=n—ce(n+d) >0

qu (0, m| F& Jur(9, 0" Zeﬁ (0, m|Fg ur(6, o’ (m ))]

This contradicts the R-IC of (vV, ¢, o).
[

Proof of Proposition 7 statement 2. For each N > 1, define o = o*, vV € arg min,e 7y (A3 —
v|, and ¢V : F — UF(_z)vefévX(FéV,uN) by

p(FY) € argmax ZA(@,m)uS(G,a*(m)).

XeXN(FE M) g m,
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By construction, for every N, (vV,¢", o) is credible and |0V — ¢*| = 0. It remains to show

that for every € > 0, there exists large enough N, such that

LN =Xyl <g

2. P(|oV(FY) — X <e)>1—¢;

3. (W, N, o) is R-IC.

From the denseness of rational numbers, we know that v — X3, as N — oo so the first
statement follows.

To prove the second statement, note that since (\*, 0*) is strictly credible, \* is the unique

maximizer to
)\enia}’(y) 2 A0, m)ug (6,0 (m)).

From Lemma 10, the best response correspondence B(u, v) = arg maxyep ) 2_g.m A0, m)us (6, 07 (m;))
is upper hemi-continuous. Since B(u,v) = {\*} is a singleton, from Lemma 12, B is contin-
uous at (u,v). Therefore, there exists § > 0, so that for any (y/,2') such |u — p/| < ¢ and
lv — /| < §, we have |\ — \*| < ¢ for every N € B(y/, /).

From the Glivenko—Cantelli theorem, for large N, P(|F) — po| < 6) > 1 —e. Pick
N large enough so that P(|FS — pol < §) > 1 —¢ and [V — u};| < 6. Follows from
the definition of ¢ and Lemma 11, ¢(FY) € arg MAXye XN (Y wN) 2g.m A0, m)us (0,07 (m)) C
arg MaXe (g wV) 2ogm A, M)us (0,0 (m). So with at least 1 — ¢ probability, |p(FY) — N\ <
€.

Lastly, we show that (v, ¢™, o) is R-IC for large N. Since (\*,0*) is strictly R-IC, for
any o # o*,

ZA*HmuRQU Z)\ (0, m)ur(0,o(m)).

From continuity, there exists n > 0 such that for any A such that |\* — \| < e,

Z)\QmuR(Qa Z)\HmuR(ﬁa( )) >n>0.

As we have shown, for any € > 0, for large enough N, Pr(|¢(FY) — \*| < &) > 1 —e. Pick

e < ﬁ, then follow from the same argument above, we have
> PNES)D o0, m|F ) un(8,0%(m)) > > PN(ES)D 60, m|FE un(9,0(m))
Fyerl 0,m Fyery 0,m

for any o # o*. So (vV, N, ") is R-IC.
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B.3 Cycle Length in Theorem 1

The following claim formalizes the observation made after Theorem 1: when verifying ug-

cyclical monotonicity, it is without loss to focus on cycles no longer than min{|0|, |A|}.

Claim. An outcome distribution m is ug-cyclically monotone if and only if for each sequence

(01,a1),...,(0n,an) € supp(m) where n < min{|O|,|A|} and a,11 = a1, we have

ZUS(@, a;) > Z us(0;, aitr)-
i=1 i=1

Proof. We will prove that if there exists a sequence (01, a1), ..., (0, a,) € supp(mw) with n >
min{|©|, |A|} such that

ug(fr,a1) + ... + us(On, an) < ug(br,a2) + ... + ug(0n, a1),
then there exists a sequence (61,a}), ..., (6}, a}) € supp(m) with k& < n such that
US(QID Clll) + ...+ US(H;, CL;Q) < Us(ell, CL/2> + ...+ US(Q;C, a’l)

The statement of the claim then follows from iteration.
Suppose by contradiction that there exists a sequence (61, a1), ..., (0, a,) with n > min{|©|, |A|}
such that
us(01,a1) + ... + ug(pn, an) < ug(0y,a2) + ... + us(0,,a1),

and that for all sequences with length k < n,
us(0y,a)) + ... + us(by, ay) > us(6y,as) + ... + ug(6;,, ay). (26)

Suppose min{|0|, |A|} = |A| (a similar argument works for min{|0|, |A|} = |©|), then there
exists a* that appears twice in the sequence (01, ay), ..., (0,, a,). Without loss let a; = a; = a*
with 1 <! <n. Then

us(01,a1) + ... + ug(p, an) = [us(01,a1) + ... +us(0-1,a1-1)] + [us(0;, @) + ... + ug (0, ay)]
[US(el, CLQ) 4+ ...+ US(Qlfl, CL1>] + [U5‘<91, CL[+1) + ...+ Us(en, CL[)]
[us(ﬁl, CLQ) + ...+ Us(el_l, CLZ)] + {US(QZ, al+1) —+ ...+ US(em al)]

v

where the inequality follows from (26), and the second equality holds because a; = a;. This

is a contradiction. O]
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B.4 The Benefit of Credible Persuasion: An Intermediate Example

In this section, we provide an example in which the Sender can benefit from credible persua-
sion, but cannot achieve her optimal full-commitment payoff. This example also corresponds
to the first case of Proposition 3.

The prior belief is pg with p(fr) = 0.4. Note that both the Sender’s and the Receiver’s
payoffs are supermodular. The horizontal axis p in the graph represents the probability
assigned to 0y by the posterior belief.

According to the concavification, the optimal full-commitment information structure \*
induces two posterior beliefs ;= 1/3 and p = 2/3, with the Receiver’s strategy o* playing ay
when p = 1/3 and ag when p = 2/3. However in this case the support of the outcome distri-
bution is {(0r, az), (0, a3), (0, a2), (0, as)}. This outcome distribution is not comonotone,
so (A*, o) is not credible.

The optimal credible information structure A\° is represented by the green dashed line:
it induces two posteriors, 4 = 1/3 and p = 1, with the Receiver strategy ¢° playing as
when p = 1/3 and a3 when p = 1. In particular, the support of the outcome distribution is

{(0,a2), (0, a2), (0, a3)} which is comonotone, so (A°,0°) is credible.

v(p)

us aq (05} as :

0=H|-1] 05 |08 !

0=L | 0 |075]0.8 E

UR a; | as | as ai L ag as I
0=H | 0] 2|3 0 1o = 0.4 1
0=L | 3|20
Sender and Receiver’s payoffs Concavification
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B.5 Comparative Statics: Examples
B.5.1 A Class of Aligned Preferences

Let ug(f,a) be a strictly supermodular payoff function; in addition, assume that ug favors
higher actions: ug(#,a’) > ug(6,a) for all 6 and o’ > a. Let {u%};}.ex denote a collection of
Receiver’s payoff functions defined by u%,(6,a) = w(f,a, k), where w : © x A x K — R is a
strictly supermodular function, and K C R represents a parameter space.

It’s straightforward to see that for each x € K, the Receiver payoff function uf : © x
A — R is strictly supermodular. Furthermore, preferences (us,u’;{ ) are more aligned than
(ug,u%) whenever k' > k. To see why, for each k € K and p € A(O), let a"(pn) =
max{arg max,c 4 »_, 1(0)u(6,a)} denote the Receiver’s highest best response to p when the
payoff function is u% (note that since the Sender favors higher actions, selecting the highest
best response is equivalent to breaking ties in the Sender’s favor). By Lemma 2.8.1 of Topkis

(2011), a" (u) > a"(p) for k" > k. Since the Sender favors higher actions, for any a € A,
w € A(O), and k' > K, we have

B, [us(0,d(1))] > B, [us(0,a)] = B, [us(0,0" (1))] > E,[us(0,a)].

This implies that (ug,u) are more aligned than (ug,u%) whenever x' > k. So according
to Proposition 5, the Sender obtains a higher payoff from the Sender-optimal stable outcome

distribution under (ug,u/;) than from that under (ug, u%).2”

B.5.2 Set of Stable Outcome Distributions

The following example illustrates that even in a binary-state, binary-action setting, more
aligned preferences do not necessarily lead to a larger set of stable outcomes.

Suppose the state space is © = {0, 1} with equal prior probabilities, and the action space
is A = {0,1}. Players’ payoffs are given by

Uug a=0]a=1 UR a=0]a=1
0=0 0 1 0=0 0 -1
=1 0 2 =1 0 k

where the parameter k € (0,00) captures the alignment between the players preferences. A
higher k£ implies players’ preferences are more aligned under the alignment notion in Kamenica
and Gentzkow (2011).

2T Note also that the following variant of the alignment notion in Gentzkow and Kamenica (2017) is a further
special case of this class of preferences: ug(,a) = f(0,a), u}(8,a) = f(6,a) + kg(0, a) with k € [0, 00), where
both f and g are strictly supermodular and f(0,a’) > f(6,a) for all § and a’ > a.
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We will characterize the set of stable outcome distributions; that is, 7 € A(©x A) satisfying
Te = o, ur-obedience, and ug-cyclical monotonicity (comonotonicity in this case due to the
supermodularity of Sender’s payoff).

Since states and actions are binary, an outcome distribution can be represented by a
vector in [0, 1]?. This is because specifying m(a = 1|§ = 1) and 7(a = 1|6 = 0) pins down
ma=00=1)=1—-m(a=1/=1)and 7(a=0[ =0) =1 —n(a = 1|0 = 0).

The obedient constraint for action a = 1 is

mla=10=1ur(@ =1,a=1)+n(a=1/0 =0)ur(d =0,a=1) >
mla=10 =1ur(@ =1,a =0)+7(a =10 = 0)ur(d =0,a =0)

By defining vectors @ = (m(a = 116 = 1),7m(a = 1|0 = 0)), w1 = (up(d = 1,a = 1),ur(d =
0,a =1)) and uy = (up(f = 1,a = 0),ur(d = 0,a = 0)), the constraint can be re-written in

vector form:

7w —ug) =7 - (_’“1> > 0. (OB-1)

Similarly, the obedient constraint for action a = 0 is:

k
(1—7r)-(u1—u0):(1—7r)-( 1) <0. (OB-0)
The credibility (comonotonicity) constraint is
mla=10=0)>0 = wa=1=1)=1 (CO)

To visualize how these constraints vary with £, let us represent them in a two-dimensional
figure. In Figure 4, notice that for any k, the hyperplane defined by (OB-1) always crosses
(0,0), and the hyperplane defined by (OB-0) always crosses (1,1). These two parallel hy-
perplanes both have normal vector (k,—1), and rotate at (0,0) and (1,1) respectively as k
varies.

When k < 1, the two obedience constraints are represented in the pink areas in the left
panel of Figure 5. In this scenario, (OB-1) is the binding obedience constraint. By contrast,
when k& > 1, the binding obedience constraint is (OB-0), as shown in the right panel of
Figure 5. The comonotonicity constraint, which requires that w(a = 1|§ = 1) = 1 whenever
m(a =10 = 0) > 0, is represented by the blue line segments in both cases.

The set of stable outcome distributions is thus the intersection of the pink and blue areas,

which is represented by the purple line segments in Figure 6. When k£ < 1, the set of stable
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OB-1: 7 - (’U,l — UO) > 0

OB-0: (1 =) (w1 —uo) <0[" &1

ul—’U,o:(k,—E)
(0,0) r(a=10=1)

Figure 4: Hyperplanes defined by OB-1 and OB-0

______________________ (1,1) )
OB-1
OB (CO) (CO)
(OB-1&0) (OB-1&0)
up — Up
(0,0) ra=16=1 00 """0opyg wla=1/6 = 1)
k<1 k>1

Figure 5: Stable outcome distributions

outcome distributions is {(z, 0)|z € [0, 1]}U{(1, )|z € [0, k]}, which expands when k increases.
By contrast, after the hyperplane defined by OB-1 crosses the 45 degree line, i.e., when k& > 1,
the binding obedience constraint becomes OB-0, which starts to rotate at (1,1). So the set
of stable outcome distributions, {(z,0)|z € [1 — +,1]} U{(1,z)|z € [0,1]}, shrinks when &
Increases.

A final remark is that, even though the set of stable outcome distributions changes non-
monotonically as k increases, according to Proposition 5, the Sender’s optimal payoff is always
(weakly) increasing. This can be seen in Figure 7. Let ug = (uS(H =1l,a=1),us(f =0,a =
1)) = (2,1). The Sender’s objective is to maximize 7 - ug among the set of 7 represented

by the purple line segment. The vector ug points in the northeast direction, so the value is
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. . )
L’ Tk increases

(1, k)

(OB-1&0)

(O’0> 7T(a = 1|9 = 1) (0’0) k Fcreases 7r(a = 1|9 = 1)
k<1 k>1

Figure 6: How the set of stable outcome distributions varies with k.

maximized at the northeast corner of the purple line segment.

When k < 1, increasing k expands the stable outcome distributions and the Sender’s
optimal stable outcome distribution 7#* = (1, k) changes accordingly, which strictly increases
the Sender’s value. When k£ > 1, increasing k shrinks the stable outcome distributions but

the optimal outcome distribution, 7w* = (1, 1) remains feasible, and thus the Sender’s value is

unchanged.
(1,1)
k increasesT o Us
71.*
(0,0) tla=18=1) (0,0)
k<1 k>1

Figure 7: How the optimal stable outcome distribution varies with k.
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B.6 Extension to Infinite Spaces

Suppose © and A are compact Polish spaces, and let M be a Polish space containing A. An
information structure A € A(© x M) is a Borel probability measure on © x M. A strategy
o : M — A is a measurable function from M to A.

An outcome distribution is a Borel measure 7 € A(© x A). The outcome distribution 7 is

induced by the profile (\, o) if 7 is the pushforward measure of A obtained from the function
p:(0,m)— (0,0(m)). That is, for any S € B(© x A), m(S) = Ap~1(9)).

Definition 1*. A profile (), o) is credible if

A€ argmax/us(é’,a(m))d)\',
NeD()

where D(A) = {N € A(© x M) | Xy = pto, Nyy = Aar}.

Definition 2*. A profile (), o) is R-IC if for any Receiver’s strategy o', we have

/ ur(0,0(m)) d\ > / ur(0, 0" (m)) dA.

Definition 3*. An outcome distribution is stable if it can be induced by a profile that is both
credible and R-IC.
B.6.1 Extension of Theorem 1

Let {7(-|a)}aca € A(O) denote a system of regular conditional probabilities obtained from
disintegrating m with 74 (see, for example, Chang and Pollard, 1997). The following result is

an extension of Theorem 1.

Theorem 1*. An outcome distribution 7 € A(© x A) is stable if and only if there exists a
Borel set E° C © x A with 7(FE°) = 1 such that

1. 7 is ug-cyclically monotone on E°: for any sequence (6',a'),... (0", a") € E° and
an+1 = al

Y

ius (Hi, ai) > iug (Hi, a”l) )
=1 i—1

2. 7 is ug-obedient on E°: for each a € A° = proj,(E°), let ES = {60 : (0,a) € E°}, then

I

for all @ € A° and all o' € A.

uR(H,a)dW(Gla)z/ ur(6,a") dr(6]a)

o o
a E(l
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Proof. The “only if” direction: Suppose that 7 is induced by a credible and R-IC profile (A, o).
The profile (A, o) being credible implies

A€ argmax/us (0,0(0,m))dN (6, m)
NeD()

Let @(0, m) = ug (0,0(m)). Since u(0, m) is Borel measurable and |a(6, m)| < oo, by Beiglbock
et al. (2009), A is @-cyclically monotone: i.e. there exists a Borel set ' C © x M such that
A(F) =1 and for every sequence (61,m;1), ..., (6, m,) € F,

Zus (05,0 (mi)) = Zus (05,0 (mit1)) -

Consider the function p : (0,m) — (0,0(m)), and define E = p(F'). Since A\(F') =1 and 7
is the pushforward measure of A obtained from p, it follows that 7(£) = 1. In addition, for
any sequence (01,a1),...,(0,,a,) € E, there exists sequence (61, m1),...,(0,,m,) € F such
that a; = o(m;). So

> us(Biai) =D us (05,0 (m)) >y g (6,0 (mi) = Y us(Bi,ain),
i=1 i=1 i=1 =1

which implies that 7 is ug-cyclically monotone on the set E.

Now for each a € A, let E, = {6 : (6,a) € E}. Note that 7(E,|a) = 1 for my-almost
all a € A, since otherwise there exists A C A with 74(A) > 0, such that for all a € A,
7(E,|a) < 1. This would then imply

(O x /Nl) =nm(EN(O x fl))

:/A {/@]lEx]l@X;1 dr(f]a)| dma(a)
</1de(a)

i
= 71(0 x A),
which is a contradiction. So w(E,|a) = 1 for my-almost all a € A. As a result, for all

measurable functions ¢ : © — R and all a € A, we have

/egdw(0|a) - /agdw(«9|a).
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Next we establish that for m4-almost all a € A,

/uR(H,a)dﬂ(Gla)z/ ur(6,a") dr(6]a) (27)

for all " € A. We prove this by proving its contraposition: suppose this is not true, we will
show that this implies (A, o) is not R-IC. Specifically, if (27) does not hold for m4-almost all
a € Aand all @’ € A, then there exists A € B(A) with m4(A) > 0, and for each a € A, we can
find d(a) € A that satisfies

/uR(G,d(a))dW(ela)>/ ugr(0,a)dr(0|a).

a a

Since ug(0,a) is a bounded Carathéodory function, the function

g(a.0) = [ unlb.)dn(olo)
is measurable in a and continuous in «’, and therefore also Carathéodory. For each a € A, let
¢(a) = argmax, 4 g(a,a’) denote the maximizers of the Receiver’s interim expected payoff.
Since A is compact, by the Measurable Maximum Theorem (see, for example, Theorem 18.19

in Aliprantis and Border, 2006), the correspondence ¢(a) admits a measurable selection d* :
A — A, such that for all a € A,

/ uR(H,d*(a))dﬂ(Qla)z/ uR(G,d(a))dﬂ(0|a)>/ ugr(0,a)dr(fa).

a a a

Now define f* = f for a € A and f* = I for a ¢ A. Clearly f*: A — A is measurable. In
addition,

/ uR(Q,f*(a))dW(9|a)>/ ugr(0,a)dr(0|a).

a a
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for all a € A. Since m4(A) > 0, we have that

| 0. @y (o0 = [
-/
-,
-/

_ /@XAUR(Q,Q) dr(0, a),

w0, f*(a))dwwm)} draa)

ugr(d, f*(a)) d7r(«9|a)] dma(a)

a

ugr(f,a) d7r(«9|a)] dma(a) (28)

a

ugr(f,a) d7r(9|a)] dma(a)

— — — —

Now since 7 is the pushforward measure of A, we have

/@XAUR(Q,a)dW(G,a) :/ ugr(f,o(m))dA(0,m). (29)

OxM

In addition, let ¢’ = f* o o, then ¢’ : M — R is a Borel measurable function on M, and

/ w6, *(a)) dr (6, a) = / un(0, * o o (m)) dA(0, m)
OxA OxM (30)

_ /@  un(0,0'(m))aA(B. m)

Plugging (29) and (30) into (28), we have

| un@.om)ir®.m) > [ unl.o(m)axe.m)

OxM OxA

which is a contradiction to (A, o) being R-IC. So there exists A C A with m4(A) = 1, such
that

/a un(0, @) dr(6]a) > / w0, ') dr(0)a)

forall a € A and all a’ € A.
Define E° = EN (O x A). Note that 7(E°) = 1, and 7 is ug-obedient on E°. In addition,
since 7 is ug-cyclically monotone on E and E° C E, we have that 7 is ug-cyclically monotone

on E°. This completes the proof of the “only if” direction.

The “if” direction: Suppose there exists a Borel set £E° C © x A with 7(E°) = 1, where
the outcome distribution 7 € A(© x A) is both ug-cyclical monotone and ug-obedient. Let

the message space M = A, and consider the profile (A, o) where A\ = 7 and o is the identity
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mapping. Clearly, (), o) induces 7. We will show that (A, o) is both credible and R-IC.

To see that (A, o) is R-IC, first note that following a similar argument as the one in the

/@gdw(&]a):/E gdr(0)a).

o
a

“only if” direction, we have

for all measurable functions ¢ : © — R and m-almost all @ € A. So for all ¢’ : A — A,

/@ unlb, )i (,0) = /A /@ wr(8, a) dr(8]a) dra(a)
:/A/OUR(e,a) dr(9la) dra(a)
2/A/iuR<9,a'(a)>dw(9|a)dm(a>
_ /@ XA;R(G,J’(CL))dW(Q,a),

which implies that (A, o) is R-IC.
Next we show (A, o) is credible. Since 7 is ug—cyclically monotone on E°; every sequence
(01,a1),...,(0n, a,) € E° satisfies

Zus(&» a;) > Z ug(0;, aiv1),
i=1 i=1

where a,.1 = a;. Since A = 7 and o is the identity mapping, this is equivalent to the existence
of aset F C © x M with A(F') = 1, such that

Z ugs(6;,0(m;)) > Z ug(0;, 0(mis1));

for every sequence (61, my), ..., (0n, m,) € F with m,, ;1 = m;y. By Beiglbock et al. (2009), A

satisfies

A € arg max / us(0,a(m)) d\
NeD() Joxm

which means (A, o) is credible. O

B.6.2 Extension of Proposition 2

Next, we extend Proposition 2 to infinite spaces. Let A, ©, and M be compact subsets of R,
and A C M.

Definition 4. An outcome distribution m € A(© x A) is a no-information outcome if there
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exists a € A such that m(© x {a}) = 1.

For each pair of actions a,a’ € A, let Og(a,a’) = {60 : ur(0,a) = ug(f,a’)} denote the set

of states under which the Receiver is indifferent between a and a’'.

Proposition 2*. Suppose p(Og(a,a’)) < 1 for all distinct a,a’ € A. In addition, suppose
ug : © x A — R is strictly supermodular and ug : © x A — R is submodular, then any stable

outcome distribution must be a no-information outcome.

Proof. Let m be a stable outcome distribution. By Theorem 1 and Lemma 1, there exists a
Borel set £° C © x A with 7(E°) = 1, such that

1. m is comonotone on E°: for all (6,a),(0',ad") € E, a < a’ implies § < #'; and

2. 7 is ug-obedient on E°: for each a € A° = proj,(E°), let I, = {60 : (0,a) € E°}, then

/uR(H,a)dW(Gla)z/ (0, ') dr(0]a)

I, Ia

for all @ € A° and o' € A.

From wug-obedience, we know that for all a,a’ € A° with a < d’, we have

/ [ug(0,a) — ug(,ad")] dr(fla) >0 > / [ur(6,a) — ugr(d,da’)] dr(6|a’). (31)

I, 1,

al

In addition, comonotonicity implies that 6 < @' for all 0 € I,, 0’ € I,,. Since up is submodular,
we have ug(0,a) — ugr(0,a’) <ug(d,a) —ur(d',a’) for all @ € I, and ¢ € 1/, which implies

sup{ur(0,a) —ugr(0,a’ )} < inf {ug(d',a) —ugr(d',da’)},

bel, 0'el,

and therefore

/ [un(0,a) — un(9, a')] dr(8la) < / suplur(0, a) — un(0, a')] dr(0]a)

L I, 0€l,
= sup{ur(0,a) — ugr(b, a’)}
ocl, (32)
S Ginlf {UR(QI, a) - UR(9/7 a/)}
el

< [ unl6.0) = un(6. @) dr(6la).
1,
Combining (31) and (32), we have for all a,a’ € A°, a < &,

/I [ur(0,a) —ugr(d,a)] dr(fla) = sup{ugr(d,a) — ur(f,a’)} =0

oel,
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and

I,

This implies that for all a,a’ € A°, a < d’, we have

ur(6,a) —ugr(h,a’) <0 forall 6§ € I,,
with ug(0,a) = ug(d,a’) for m(.|a)-almost all 6 € I,;

and

ur(0',a) —ur(0',a’) >0 for all ¢ € I,

with ug(#',a) = ugr(#',d’) for n(.|a")-almost all §' € I,

/ [ur(0,a) —ugr(0,d)] dr(fla") = Qlié’llfa’{u}g(ﬁl, a) —ug(#,d)} =0.

(33)

(34)

For each a € A° let N(a) = {0 € I, : ug(0,a) # ugr(f,da’) for some a’ € A°} denote the
set of states in I, under which the Receiver is not indifferent towards all actions in A°. We
want to show that (N (a)|a) = 0 for each a € A°. Note that this does not follow directly from

(33) and(34) since A° may be uncountably infinite, and an uncountable union of 7(.|a)-null

sets may no longer be a 7(.|a)-null set.

However, note that since ug is submodular, for any o’ > a, if ug(0,a) —ug(6,a’) < 0, then

ug(0',a) —ugr(@,d’) < 0 for all #" < 0. Similarly, for any o’ < a, if ug(0,d’) — ug(f,a) > 0,
then ug(¢',a’) —ugr(0',a) > 0 for all @ > §. This means that N(a) is the union of nested sets

that are located at either the lower or upper ends of I,. We will exploit this structure to show

m(N(a)|la) = 0.
For each a’ € A°, a’ > a, let us define

N(d'|a) = {6 €I, :ug(f,a) —ugr(f,d) < O},
and
0(d'|a) = sup {9 €I, :ugr(f,a) —ugr(d,d) < 0}.

It follows that
(— o0, O(d’|a)) NI, € N(d'|a) C (- o0, O(d|a)] N1,

and (N (d'|a)|a) = 0.

Analogous, for each a’ € A°, @’ < a, define

N(d'|a) = {9 €l,:ur(d,ad)—ur(f,a) > 0},
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and

0(a'|a) = inf {9 €I, :ugr(f,d) —ugr(f,a) > 0},

then
(6(d'|a), 00) N1, € N(d'|a) C [0(d'|a), 00) N1, (36)

and (N (d'|a)|a) = ~
Let N( ) = Uaera>aN( 'la) and N(a) = Upcaoa<aN(d'|a), then we have N(a) =
N(a) U N(a). In order to show 7(N(a)|a) = 0, it suffices to show both 7(N(a)|a) = 0 and
7(N(a)|a) = 0. Below we will show 7(N(a)|a) = 0. The fact that 7(N(a)|a) = 0 follows from
similar arguments.
Let 0(a) = SUD /e A0 a/>a 0(a'|a). By (35) and the definition of N(a), we have

~ A~

(—00,0(a)) N1, € N(a) C (—oc0,0(a)] NI,

However, note that if (a) € N(a), then 6(a) € N(d'|a) for some a’ € A° with o’ > a, and this
would imply 7({f(a)} | a) = 0 since 7(N(a'|a)|a) = 0 for all @’ € A° with o’ > a. Therefore,
in order to prove 7(N(a)|a) = 0, it suffices to prove that 7((—o0, 0(a)) N1, | a) =

To this end, note that (—oco, 6(a)) = U, (—oc0, f(a)—1/n). Since f(a) = SUDyrc A0 /> 0(d|a),
for each n > 1, (—o0,8(a) — 1/n) C (—o0,6(d'|a)) for some o’ € A° with @’ > a. So for each
n>1,

W((—oo,é(a) —1/n) N1, a) < 7r( (—00,0(d'|a)) N 1, | a> < #(N(d|a) | a) =0.

As a result, we have

so m(N(a)|a) = 0.
Using similar arguments as above, we can establish that 7(N(a)|a) = 0 as well, so
7(N(a)|a) = 7( N(a) U N(a)|a) = 0. For each a € A°, let
Oo(a) = {0 €1l,:ur(d,a)=ugr(d,d) for all ' € A°} = [N(a)]",

so m(Oy(a)|a) =1 —7(N(a)|a) = 1.
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Let ©p = {0 € © : up(h,a) = ur(h,a) for all a,a’ € A°}. We have

110(60) = (6 x A) = ((6y x A)NE),

SO

=

o
O)

N
I

Loya 1p dn(6,a)

X
bS

lgywa1e dﬁ(€|a)} dma(a)

L6 d5(610) | dnafa)

o B pu—
—

=
©
=)

(@)l a)dma(a)

Il
— e

—_
QU
)

hS

(a) = 1.

Recall that ©¢(a,a’) = {0 € © : ur(0,a) = ur(f,d’)} and by our assumption py(O¢(a,a’)) < 1
for all distinct a,a’ € A. Since ©g = {# € © : up(h,a) = ug(f,d) for all a,a’ € A°} and we
have established that 19(6g) = 1, A° must be a singleton set. Since 7(© x A°) > n(E°) =1,

it follows that 7 is a no-information outcome. O

B.7 Credible Persuasion in Games

In this section, we generalize the framework in Section 2.1 to a setting with multiple Receivers,
where the Sender can also take actions after information is disclosed. We also allow the state
space and action space to be infinite.

Consider an environment with a single Sender (she) and r Receivers (each of whom is a
he). The Sender has action set Ag while each Receiver i € {1,...,r} has action set A;. Let
A = Ag x Ay x ... x A, denote the set of action profiles. Each player has payoff function
u; c ®©x A= R, i =95,1,...,r, respectively. The state space © and action spaces A; are
Polish spaces endowed with their respective Borel sigma-algebras. Players hold full-support
common prior py € A(O). We refer to G = (O, pg, As, us, {Ai}i_y, {wi}l_;) as the base game.

Let M be a Polish space that contains A. The Sender chooses an information structure A €
A(O x M) where A\g = ip: note that this formulation implies that the information structure
generates public messages observed by all Receivers. Together the information structure and

the base game constitute a Bayesian game G = (G, \), where:*®

28The information structure A can be viewed as “additional information” observed by both the Sender and
the Receivers, on top of the base information structure where the Sender observes the state and the Receivers
do not observe any signal.
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1. At the beginning of the game a state-message pair (6, m) is drawn from the information

structure A;
2. The Sender observes (0, m) while the Receivers observe only m; and
3. All players choose an action simultaneously.

A strategy profile 0 : © x M — A in G consists of a Sender’s strategy og : © x M — Ag
and Receivers’ strategies o; : M — A;, i = 1,...,r. For each profile of Sender’s information

structure and players’ strategies (A, o), players’ expected payoffs are given by

Ui\, o) = / ui(0,0(0,m))d\(@,m) for i=S,1,...
OxM

We now generalize the notion of credibility and incentive compatibility in Section 2 to the
current setting. For each A, let D(A) = {N € A(© x M) : Ay = po, Xy = A} denote the set
of information structures that induce the same distribution of messages as A. Definition 5 is
analogous to Definition 1, which requires that given the players’ strategy profile, no deviation
in D(A) can be profitable for the Sender.

Definition 5. A profile (A, o) is credible if

A€ argmax/us(H,J(G,m)) dX\' (6, m). (37)
NeD(N)
In addition, Definition 6 generalizes Definition 2, and requires players’ strategies to form

a Bayesian Nash equilibrium of the game (G, \).

Definition 6. A profile (), o) is incentive compatible (IC) if o is a Bayesian Nash equi-
librium in G = (G, \). That is,

os € argmax Ug(\ 05,0_5) and o; € argmaxU;(\ 0,,0_;) fori=1,...,r. (38)
ol :OXM—Ag ol:M—A;

Note that in Definition 5, when the Sender deviates to a different information structure,
say A, we use the original strategy profile o(6,m) to predict players’ actions in the ensuing
Bayesian game (G, ). One might worry that the Sender may simultaneously change not
only her information structure but also her strategy og(6,m) in (G, ). This, however, is
unnecessary since the Sender’s optimal strategy in (G, \') will remain unchanged: the Sender
knows 6 perfectly, her best response in (G, \') depends only on 6 and the Receivers’ actions

(and not on her own information structure).
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